

Modeling the Physics of HVAC systems with Simscape

Aldo Caraceto

Application Engineering Group - MathWorks

📣 MathWorks[.]

Key Messages

- Simscape offers a modeling method that is well-suited to thermal, fluid, and other types of physical systems
- Combining CARNOT Blockset content with Simscape capabilities could offer big benefits to CARNOT users

Thermal

Liquid

 CARNOT Blockset could tackle a wider range of problems if it leveraged Simscape Hydraulic

Agenda

- Primary Example: House Heating Model
- Comparing Modeling Methods (signals, networks)
- Combining Simscape and CARNOT Blockset
 - Standard components
 - Custom components
- Extending CARNOT using Simscape
 - Range of fluid domains (phase change, gas, moist air)
 - Electrical, mechanical, energy storage (batteries, etc.)

Example: House Heating System

- Single pump and boiler
- Four radiators connected in parallel
 - Thermostat on each radiator
- Four rooms in 2x2 grid each with heat transfer
 - A Through wall to 2 rooms
 - B Through wall to outside
 - C Through window to outside
 - D Through roof to outside
- Water transports heat through network, and water properties vary with temperature and pressure

Agenda

- Primary Example: House Heating Model
- Comparing Modeling Methods (signals, networks)
- Combining Simscape and CARNOT Blockset
 - Standard components
 - Custom components
- Extending CARNOT using Simscape
 - Range of fluid domains (phase change, gas, moist air)
 - Electrical, mechanical, energy storage (batteries, etc.)

Physical Modeling Method

- Physical connections makes modeling physical systems quicker and easier
 - Intuitive
 - Easy to modify
 - Easy to maintain
- Automatic formulation of system equations
 - ODEs and DAEs

Agenda

- Primary Example: House Heating Model
- Comparing Modeling Methods (signals, networks)
- Combining Simscape and CARNOT Blockset
 - Standard components
 - Custom components
- Extending CARNOT using Simscape
 - Range of fluid domains (phase change, gas, moist air)
 - Electrical, mechanical, energy storage (batteries, etc.)

Strengths of CARNOT Blockset and Simscape

- CARNOT Blockset
 - Application-specific blocks
 - Extensive set of application examples
 - Many person-years of research
 - Validation against specific test cases

- Simscape
 - Modeling approach (physical networks)
 - Advanced effects (phase change, condensation, flow reversal)
 - Generic, multi-purpose components

MathWorks[®]

Combining CARNOT Blockset and Simscape

Use Blocks from Simscape Libraries

- Simscape libraries have many components that could be a close match
 - Review parameterization and assumptions in equations
- Benefits:
 - Blocks fully documented
 - Maintained by MathWorks (code, documentation)
 - Parameterization tools

CARNOT Blockset Model Example_Hydraulic_Valve.slx

Implementation Using Standard Simscape Blocks

Combining CARNOT Blockset and Simscape

Reuse Equations in Simscape Language

- Custom Simscape blocks can use the same equations as CARNOT Blockset blocks
 - Simscape language (extension of MATLAB)

Calculate massflow by solving the equations: pressure_drop = $c + l*mdot + q*(mdot)^2$ pump_pressure = $a0 + a1*mdot + a2*(mdot)^2$

Agenda

- Primary Example: House Heating Model
- Comparing Modeling Methods (signals, networks)
- Combining Simscape and CARNOT Blockset
 Standard components Custom components
- Extending CARNOT using Simscape
 - Range of fluid domains (phase change, gas, moist air)
 - Electrical, mechanical, energy storage (batteries, etc.)

Politecnico di Torino and EMA Global Develop a Multidomain Hypercar HVAC System Through Industry-Academia Collaboration

Using MATLAB and Simulink, EMA Global partnered closely with Politecnico di Torino to develop an HVAC system for a custom-built, multimillion dollar car

Results

- Developed detailed HVAC system modeled across <u>six</u> different physical domains using Simulink and Simscape
- Calibrated, optimized, and tested an accurate HVAC system controller without relying on hardware
- Shortened the overall development time for the controller using Model-Based Design

"This project was a great opportunity for EMA Global to collaborate with both MathWorks and Politecnico di Torino in applying a state-of-the-art automotive engineering approach that we can now continue to use moving forward."

- Mirko Zanotel, EMA Global Engineering

HVAC System – Details - Cabin

Model Fluid Systems Using Simscape

- Set of domains to accommodate range of assumptions for fluid systems
- Libraries with source code for each domain
 - Extend as needed
 - Wide range of examples to get you started

Assumption	Assumption Simscape Domain	
Constant heat transfer coefficient	Thermal	
Liquid properties do not vary with temperature	Hydraulic (Isothermal Liquid)	
Liquid properties vary with temperature	Thermal Liquid	
Gas	Gas	
Fluid that changes phase	Two-Phase Fluid	
Mixture of 3 species with condensation	Moist Air	

Integrate Additional Domains Using Physical Network Method

- Integrate electrical, mechanical, and other systems
- Example applications: Cooling systems for electric motors and batteries

Electric Vehicle Configured for HIL

Simscape Add-On Libraries

- Extend foundation domains with components, effects, parameterizations
- Multibody simulation
- Editing Mode permits use of add-ons with Simscape license only
- Models can be converted to C code

Simscape Fluids

Overview

- Enables physical modeling (acausal) of fluid systems
 - Fluid power, heating, cooling, and fluid transportation
 - Liquids, gases, and multiphase fluids
- With Simscape Fluids you can
 - Refine requirements for fluid systems
 - Discover integration issues early
 - Design control algorithms and logic within the Simulink environment
 - Test embedded software without hardware prototypes

Simscape Fluids Applications

Heating and Cooling Systems

- Engine cooling system
 - Coolant loop, oil loop
 - Pump drives cooling circuit
 - Thermostat diverts flow to the radiator when temperature is too high
- Simscape Fluids is used to:
 - Refine system-level requirements
 - Select components (pumps, valves)
 - Test system integration
 - Design control systems, including HIL testing

>> sscfluids_engine_cooling_system

MathWorks[®]

Simscape Fluid Component Models

DS <

3-Zone Pipe (2P)

Simscape Fluids Component Models

Pumps and Motors, Valves, Actuators, Pipes and Tanks, Heat Exchangers

- Standard and custom types
 - Parallel or counter flow
 - Single or multiple shell passes
 - Mixed or unmixed flow

- Parameterization options
 - Pressure losses
 - Heat transfer
 - Compressibility

Pressure loss parameterization:
Constant loss coefficient
Correlations for tubes Tabulated data - Darcy friction factor vs. Reynolds number Tabulated data - Euler number vs. Reynolds number

Heat transfer parameterization: Constant heat transfer coefficient Correlation for tubes Tabulated data - Colburn factor vs. Reynolds number Tabulated data - Nusselt number vs. Reynolds number & Prandtl number

Simscape Fluids Component Models

Pumps and Motors, Valves, Actuators, Pipes and Tanks, Heat Exchangers

- Directional
 - Spool, check, cartridge
 - Parameterization options
- Pressure control
 - Control tasks (variable)
 - Switching tasks (fixed)
- Flow control
 - Pressure dependent
 - Pressure independent

Simscape Fluids

Fluid Properties

- Select predefined fluid properties
 - Includes water, seawater, and solutions of glycerol, ethylene glycol, and many more

Properties (TL)		×
(TL)	Thermal Liquid	
	Properties (IL)	
Water -		
Water Seawater (MIT model)		
Ethylene glycol and water mixture		
Propylene glycol and water mixture		
Glycerol and water mixture		
Aviation fuel Jet-A		
	Properties (TL) TL) Water Water Seawater (MIT Ethylene glyco Propylene glyco Glycerol and w Aviation fuel Je	Properties (TL) TL) TL) Thermal Liquid Properties (TL) Water Water Seawater (MIT model) Ethylene glycol and water mixture Propylene glycol and water mixture Propylene glycol and water mixture Aviation fuel Jet-A Diesel fuel

- Import from common databases
 - REFPROP, CoolProp
 - Any database with a connection to MATLAB

Simscape Resources

General from mathworks.com

- Web page: <u>simscape</u>
- Documentation: <u>simscape/index.html</u>
- All Videos: <u>simscape/videos.html</u>
 - 1. Simscape Overview
 - 2. Modeling an Engine Cooling System
 - 3. Modeling a Hydraulic Actuation System
 - 4. Modeling a Fuel Supply System
- Examples: <u>simscape/examples.html</u>
- File Exchange: <u>matlabcentral/fileexchange</u>
- MATLAB Answers: <u>matlabcentral/answers</u>

MathWorks[®]

Key Messages

- Simscape offers a modeling method that is well-suited to thermal, fluid, and other types of physical systems
- Combining CARNOT Blockset content with Simscape capabilities could offer big benefits to CARNOT users

Liquid

CARNOT Blockset could tackle a wider range of problems if it leveraged Simscape Hydraulic

