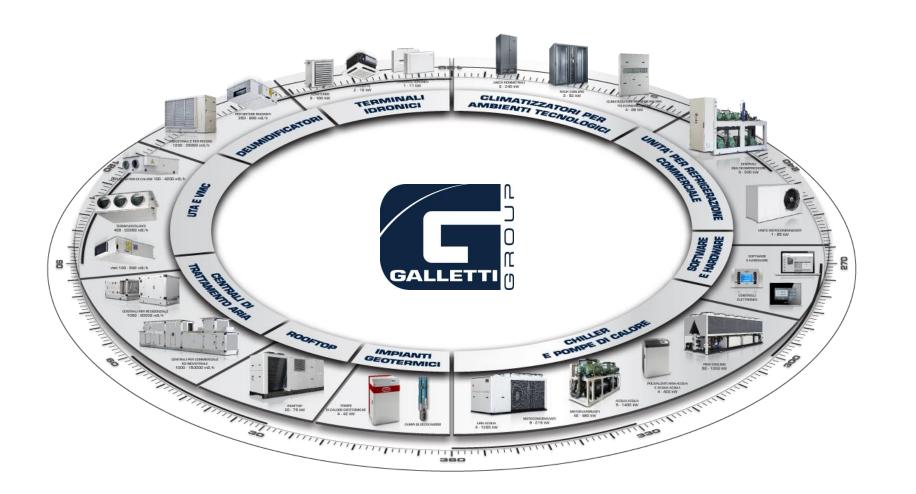


BOLOGNA

June 2023

R290 retrofit of an R454B inverter-driven heat pump: thermodynamic analysis, issues and possible developments

Filippo Genovese Project Engineering Leader – Galletti S.p.A


Galletti - Mission

Leader in manifacturing of chillers, heat pumps and hydronic units. Application in comfort and process cooling/heating plants.

360° products and services

Summary

• Introduction: actual and future refrigerant scenario

• Thermodynamic analysis of a R290 heat pump

• Issues in using R290 in heat pumps

• Future developments and applications of R290 chillers and heat pumps

Introduction - Refrigerant scenario

GWP: Global Warming Potential

Provides a common scale for measuring the **climate effects** of different gases and it's measured in **carbon dioxide equivalent**: for any gas, it is the mass of **CO2** that would warm the Earth as much as the mass of that gas, in 100 years

Example: GWP of R454B is 467, so in 100 years a leak of 1 ton of R454B is equivalent to emitting 467 tonnes of CO2. **By definition, GWP of CO2 is equal to 1**.

F- gas revision:

	2026	2030
Best case scenario	Ban of all the heat pumps with Pdes<50 kW and GWP>150	Ban of all the heat pumps with GWP>150
Worst case scenario	Ban of all the heat pumps with GWP>150	

Introduction – Refrigerant Scenario

Vacuum density refrigerant:

Risk of refrigerant circuit contamination in case of leakeage being internal pressure lower than atmospheric pressure

Blends of R1234ze or R1234yf: R516A, R1270, R444B may be banned because of Pfas

Only choices: natural refrigerants

R1270 (Propylene) R600a (Isobuthane) R717 (Ammonia) R744 (Carbon Dioxide) R290 (Propane)

Introduction - Why Propane?

	GWP	Flammable	Тохіс	Temperature range	Pressure range	Thermodynamic cycle
R1270 (Propylene)	3	Yes	No	-48°C ; 91°C	0,5 bar ; 40 bar	Subcritic
R600a (Isobutane)	3	Yes	No	-11°C ; 135°C	0,5 bar ; 30 bar	Subcritic
R290 (Propane)	3	Yes	No	-48°C ; 96,7°C	0,5 bar ; 35 bar	Subcritic
R717 (Ammonia)	0	Yes	Yes	-33°C ; 132°C	0,5 bar ; 100 bar	Subcritic
R744 (Carbon Dioxide)	1	No	No	-50°C ; 60°C (Supercritic)	6 bar; 150 bar	Transcritic/ Supercritic

- Non **toxic** refrigerant
- No need for **supercritical** or **transcritical** cycles
- Mid pressure refrigerant lower pressure to manage
- High temperature range **extended envelope**

• Introduction: actual and future refrigerant scenario

• Thermodynamic analysis of a R290 heat pump

• Issues in using R290 in heat pumps

• Future developments and applications of R290 chillers and heat pumps

Step 1: Retrofit of existing unit **R454B** → **R290**

- 1) Goal: rated heat output **35 kW, water 30/35°C @7(6)°C**
- 2) Minichannel air coil, 3 rows (diameter 5 mm)
- 3) Brazed plate heat exchanger
- 4) Inverter-driven compressor, displacement 88 cc

Replacement with **R290 optimized compressor**, displacement 100 cc

Kept same piping diameter, line components and heat exchangers

Results of step 1: Water 30/35°C, Air Temperature 7(6)°C

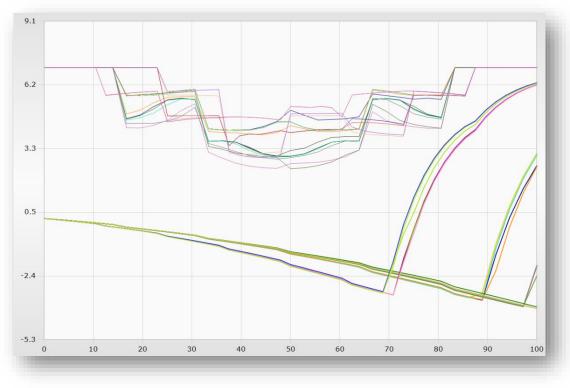
	R454B	R290
Evaporating Temperature	-4,1°C	-7,4°C
Condensing Temperature	41,3°C	40,3°C
Compressor rps	5100	7050
СОР	3,60	3,50
SCOP	3,40	3,14

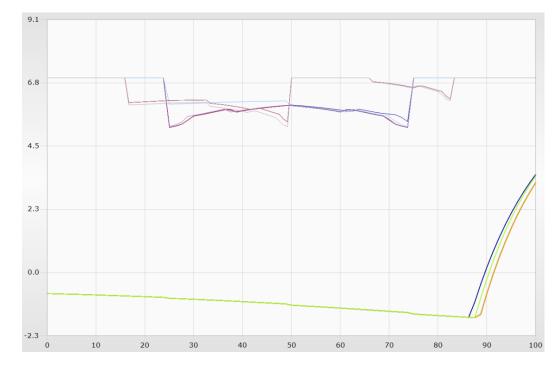
Due to lower density of refrigerant, keeping the same heat exchangers and line components, pressure drops increase, and overall energy loss increase, so:

- Compressor must run at a higher velocity to meet the heat load required
- Evaporating temperature decreases (dT=-3,3K), so the thermodynamic cycle is less efficient and the risk of frosting increases also at higher ambient temperature
- Seasonal energy efficiency decreases

Direct retrofit is not sustainable!

Step 2: Thermodynamic optimization


- Increased air heat transfer surface: from 1 coil 3 rows, to 2 coil
 2 rows. Optimization of heat exchange, due to lower pressure
 drop ---> Higher evaporating temperature
- 2) Optimized plate heat exchanger: asymmetric plates, different plate corrugation.
- 3) Optimized line components (higher kv) and piping diameter: **reduction of energy losses** inside pipes due to friction.


Temperature profiles in finned coil heat exchanger

Before optimization

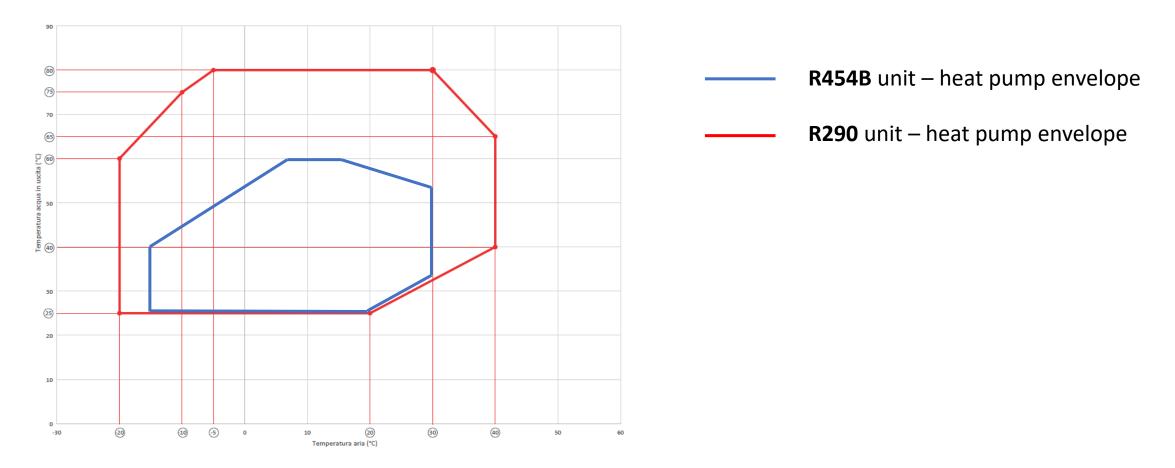
3,5K of saturation temperature **lost** due to pressure drop inside the heat exchanger

After optimization

0,7K of saturation temperature **lost** due to pressure drop inside the heat exchanger

Results of step 2: Water 30/35°C, Air Temperature 7(6)°C

	R454B	R290
Evaporating Temperature	-4,1°C	-4°C
Condensing Temperature	41,3°C	38,3°C
Compressor rps	5100	5500
СОР	3,60	3,74
SCOP	3,40	4,02


With optimized components:

- Compressor could run at a lower velocity
- Evaporating temperature is **comparable** to R454B
- Seasonal energy efficiency increases

Higher cost of overall unit, but overall efficiency +19%!

Due to **lower operating pressures, lower dP**, and lower **discharge temperature** the compressor could work at higher condensing temperatures, and lower evaporating temperatures. **Wide range** of application permitted

• Introduction: actual and future refrigerant scenario

• Thermodynamic analysis of a R290 heat pump

• Issues in using R290 in heat pumps

• Future developments and applications of R290 chillers and heat pumps

Issues – Safety management

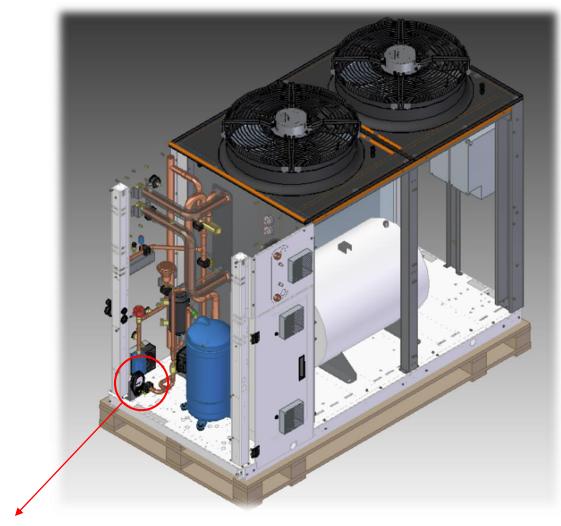
- R290 is classified as A3, so non toxic, highly flammable
- R290 density is higher than air
- A leakage of refrigerant generate ATEX classified zones.

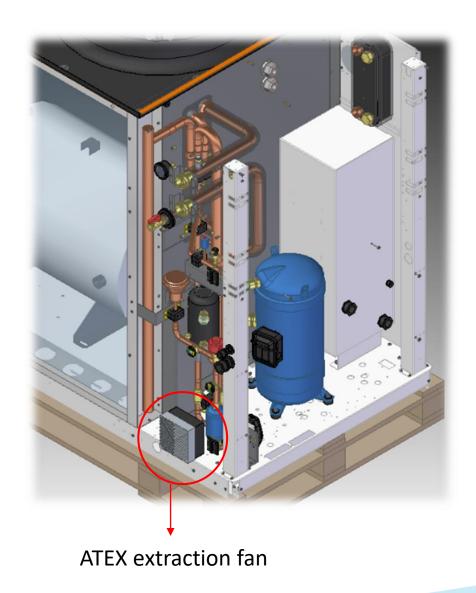

Solder connections and hermetic components

• Reduction of refrigerant charge

Minichannel coil, asymmetric plate heat exchanger, optimized gas piping

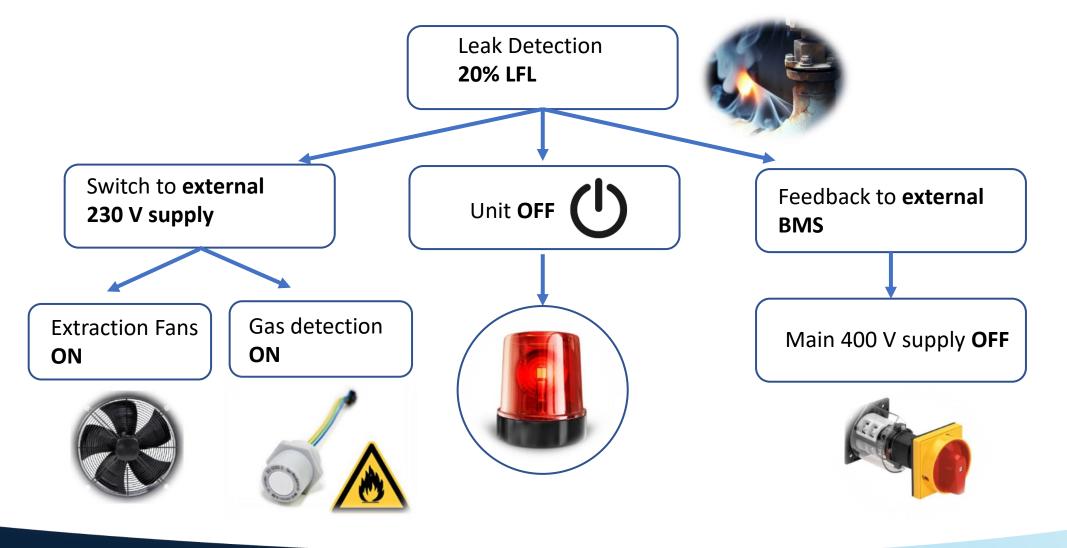
• Reduction of risk in case of leakage


Leakage sensor (30% LFL), extraction fan, safety interlocks



Issues – Safety management

Gas detector



Issues – Safety management

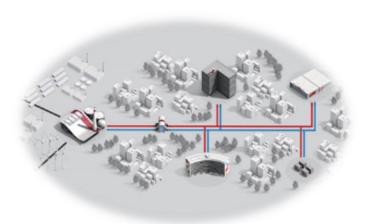
• Safety logic of the unit: continuos communication with the plant. Overall risk minimization

• Introduction: actual and future refrigerant scenario

• Thermodynamic analysis of a R290 heat pump

• Issues in using R290 in heat pumps

• Future developments and applications of R290 chillers and heat pumps



Possible developements

Air conditioning:

- Boiler replacement
- DHW production during the whole year with Anti-Legionella treatment
- District heating system

Process cooling:

 Low temperature applications down to -20°C glycol production (es. ice rinks, distillery, food conservation)

Process heating:

 High temperature applications up to 80°C water production (es. sterilization, pastorization)

Possible developements

Modular units for big capacity plants and reduction of leakage risks

- Compact units with **small footprint** and with **low refrigerant charge** (max 5 kg)
- Two or more units can be paralleled via LAN to increase the overall unit capacity

Thank you!

