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Introduction and motivation

The street canyons trap the heat
between the walls and lead to
warming up of the buildings.

A vicious cycle is created in the
cities, where the use of air
conditioning adds up to the heat
waves and pollutants, leading to
heat-emissions. Many commercial
complex and corporate offices use
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Building Material islands.

These are also required to assess
the effectiveness of the possible
amelioration measures which could
be used to improve the climate of
our towns and cities.
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Introduction and motivation

In the literature, a large number of
investigations are available to
determine the role of the
convective and radiative exchanges
separately, especially on the outer
side of the building components.
Conversely, few studies are found
for the heat exchanges on the
inner side that influence the
enclosure mean radiant
temperature and consequently the
thermal comfort conditions.

It was proved that a wide uncertainty range could be observed
when heat transfer coefficients vary dynamically, especially for
the convective exchange viewpoint.

Wind direction has a noticeable influence on vertical walls and
tilted roofs, whereas the temperature difference between air
and wall surface has a negligible effect when the wind velocity is
greater than 2 m/s.
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Regarding the surfaces of the inner components,
the conditioned space as well as of the air-
conditioning system produce great fluctuations in
the convective heat transfer coefficients, such as
the non-uniformity of the indoor air temperature,
the simplification to use a characteristic dimension
for the enclosure, and the impact of airflow
disturbances.
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Steady and dynamic heat transfer coefficients
acting on different building components affect
energy and thermal comfort evaluations.

Dynamic heat transfer coefficient
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Dynamic heat transfer coefficients

the two scenarios considered to investigate the role of the
heat transfer coefficients on the surface temperatures and
thermal fluxes have been defined as “detailed” and
“simplified” approaches, corresponding to the case with
dynamic/separated and constant/combined heat transfer
coefficients respectively
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Dynamic heat transfer coefficients

The simplified procedure on the inner side provides

underestimated temperature for every component
suggesting that the adoption of constant thermal
resistances produces an underestimation of the

convective and radiative exchanges.

Conversely, the employment of dynamic and
separated heat transfer coefficients can provide

appreciable results.

TRNSYS TRNSYS Dynamic
Steady values
values
Maximum heat load [W] 548.87 454.33
Energy need in the considered 42.63 31.82

period [kwWh]
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The use of constant convective heat transfer coefficients on the building component surfaces
produces an increase in the maximum heating load and of the thermal energy need equal to

20% and 34% respectively.
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Roof

City neighborhood scale

Window layer Solar radiation

The model gives the dynamic integration of ;pw,,.e;_lm_ RN
urban microclimate and building e |y | e lilli\ %
thermal/energy models. vt 2 | B
The dynamic simulations were achieved using
weather station data as boundary conditions, (©
including air temperature, solar radiation, and %WWWW%
wind speed and direction, instead of typical TR
meteorological year data. *
The building are a single zones, within which
Energy the air is well mixed, i.e., internal flows
journal homepage: www.elsevisr.com/locats/ensray between spaces are ignored.

The total thermal load of the building is
Urban building energy and microclimate modeling — From 3D city composed of convective heat transfer from

generation to dynamic simulations
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Input Data

Temperature (°C)

Multi-domain approach Sy R e
-
* OSM/Microsoft: building’s footprint * Building’s age/usage data * Air temperature
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Building surface temperature (fagade, roof)

Coupling Strategy Output

T, (°C). 25.0 27.9 30.7 33.6 36.4 39.3 421 45.0
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Historical buildings

Article

Numerical Analysis on the Optimisation of Thermal Comfort
Levels in an Office Located inside a Historical Building

Eleonora Palka Bayard de Volo *, Beatrice Pulvirenti **/, Aminhossein Jahanbin

, Paolo Guidorzi
and Giovanni Semprini
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Grid and boundary conditions

w
m Solar Load ||
Configurations Inlet air velocity [—] Summer Winter
Direct radiationq) Diffuse radiation
S " S - Outside 30 °C 6 °C
Case B 2 0 10 temperature
Case C 1 597.6 597.6 Inlet 16 °C 33°C
Case D 2 597.6 597.6 temperature
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Summer

Case A

CaseB
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Heat transfer coefficient
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Winter

Tempero’rure (@)
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Temperature (C)



Winter — heat transfer coefficient




Developing a framework

A multi-domain simulation
method is proposed for a
structure with a thermally
complex building envelope.

The method integrates a dynamic lumped-
parameter simulation tool (ALMABuild)
coupled with computational fluid dynamics (CFD)

simulations.

The convective heat transfer coefficients between
zones are calculated via CFD and passed to

ALMABUuild.

Weather
data

CFD

N-S equations

Energy equation

Internal
Weather t@mp@m@m
data |
Building T
data ALMABuild
Matlab solver
equations
Heat transfer

coefficients

Convergence >
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Conclusions

Through the
multidomain

modelling approach ® ‘_//:: . .ﬁ ‘
here presented it is ':I_q-]_- m IET

possible:

» To establish the appropriateness of current convective heat transfer coefficient equations
for the application to the surfaces of buildings.

» To take account of realistic atmospheric conditions in the boundary layer above urban
areas, including the mean velocity profile and levels of turbulence.

» To determine the effect that the incident wind direction has upon the rate of convectlve
transfer from the surfaces of buildings. Ll



Conclusions

ALV Abuild
This integrated +CFD
framework gives °

'_
the following ':I.q-.l.-

achievements:

ALMADbuild
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» To determine the effect that various typical building spacings (street canyon widths)
will have upon the rate of convective heat transfer coefficient.

» To determine the variation of the convective heat transfer coefficient across the
various surfaces of a building, and to ascertain the distribution of coefficients across
each surface.

» To present the results in a manner that permits incorporation into future urban
climate and building thermal models.

CFD
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Thank you!

Beatrice Pulvirenti and Eleonora Palka Bayard De Volo

For any question: beatrice.pulvirenti@unibo.it

WWwWw.unibo.it
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