

+

Technische Hochschule Ingolstadt

> Institut für neue Energie-Systeme

Parallel operation of two heat sources in a DSHP

CARNOT User Meeting 2023

Tobias Reum, M.Eng.

26.06.2023

- 1. Introduction
- 2. Modelling approach
- 3. First results

1. Introduction

Dual-Source Heat Pumps: Concepts

- To benefit from advantages and limit disadvantages: Heat Pumps using multiple heat sources, e.g.:
 - Air + solar
 - Ground + solar
 - Air + ground
 - More exotic applications like water + ground, waste heat + air etc.
- Reduce size from ground source while achieving high efficiencies and limit noise
- Different hydraulic approaches: Several heat pump systems, brine cycles for heat sources, etc.

Dual-Source Heat Pumps: Aims

- Reduce size: reduced annual load on ground source by using air source in spring, autumn, summer
 - Reduces energy extracted from the soil (BHEs, horizontal, etc.)
- Maintain high efficiency: switch to beneficial heat source according to ambient temperatures
 - e.g. air source during high ambient temperatures, ground source during cold winter days
- Reduce noise: switching to ground source during sensible times (e.g. night operation)
 - reduces ventilator noise but not necessarily compressor noise (depends on the system)

→ Can in parts contradict themselves: optimization according to purpose necessary

Novel hybrid heat pump system

- Is it possible to operate both heat sources in parallel?
 - Can reduce power load on each heat source
 - Non-trivial for the refrigerant cycle: for full flexibility and efficiency, separate evaporation pressures are needed

- Black box model first: based on experimental data and fast
 - Refrigerant cycle simulation might follow later for verification and inter- as well as extrapolation
- Many degrees of freedom: 3 temperatures (ambient air, brine, heating system/DHW) + 2 frequencies → 3⁵ = up to 243 measurements for quadratic interpolation
- Solution: Comparison of parallel operation with overlying single source operation at certain boundary conditions
 - Correction factors required

First tries with CARNOT heat pump model were difficult, because of the internal feedback of the heating temperature T_{sink}

■ But T_{sink} needs to be calculated with the sum of both heating powers! → own solution for now...

• Overall DSHP model

Parallel operation: single air source operation plus correction factor fair

Parallel operation: single air source operation plus correction factor fair

Correction factor based on comparing parallel source with combined single source operation; will become a function as well

Non-linear correction factor for inverter impact

Annual simulation

Switching between the operation modes worked according to T_a Inverter control operated quickly and stable PO activated at too high T_a : inverter reduces air source operation to minimum and T_r still overheats \rightarrow examine bivalence point 2 *according* to ground source temperature/ time of the year/ room temperature/ inverter frequencies...

Thank you for the attention!

Any remarks? Any questions?

Tobias Reum, M.Eng. Research Associate Institute for new Energy Systems

> Telefon: +49 841 9348-6841 E-Mail: tobias.reum@thi.de

Reum | CARNOT User Meeting 2023: Parallel operation of two heat sources in a DSHP | Institute of new Energy Systems

SFH45 + DHW according to DIN EN 13203

Value	Unit	DSHP	GSHP
Heating energy	MWh	12.8	
Seasonal Performance Factor	-	3.34	3.50
Energy extracted from the GSHX	MWh	4.42	8.70
Cooling power on GSHX	kW	5.53	6.37

- SPF decreases slightly by about 5 %
- Energy extracted from GSHX reduced to about 51 %
- Cooling power on the GSHX reduced to about 87 %

PO activated properly at T_a: inverter
controlled air source operation → examine
bivalence point 2 according to ground
source temperature/ time of the year/
inverter frequencies

3. PhD project

At ambient temperatures of -10 °C:

 $COP_{GSHP} > COP_{DSHP} > COP_{ASHP}$

But cooling power of the ground source:

 $P_{\rm DSHP} < P_{\rm GSHP}$, to about 65 %

