

HP_sim&app23 Carnot User meeting 2023, Bologna, June 23, 2023


Carsten Wemhöner, Christoph Meier

Motivation HP Source

Introduction

- Phase-out of fossil fuel boilers is an urgent task for the future which enables rapid and massive CO₂-reductions
- Heat pumps are seen as future heating systems in many scenarios around the world
- However, a massive implementation also needs high quality heat sources
- In particular in retrofit projects limitation of the heat source can be a major obstacle especially for higher capacities
- Integration of multiple heat sources can mitigate or overcome limitations of individual heat sources
- Due to complementary properties of the heat sources synergies among heat source can even increase performance and cost-effectiveness

Motivation HP Source

Motivation

- Enable HP-system instead of fossil fuel boilers
 - => overcoming of limitations, e.g.
 - Air: noise problem in the higher capacity range
 - Ground: limitation of drilling space and depth for ground probes
- Reduction of (Investment-)cost (CAPEX)
 - Cheaper air-source combined with less ground probes
 - Reduction of number of ground probes by regeneration with second source
- Increase of efficiency / Reduction operating cost (OPEX)
 - e.g. use of the favourable heat source with the better temperature conditions (ground in winter, air in summer)

Motivation HP Source

Objectives

- Identification of favourable heat source integration in the higher capacity range (> 50 kW)
- Investigation of design, control and integration of the heat sources
- Evaluation of the energy and economic performance
- Recommendations for favourable heat source integration
- Primary scope are residential buildings and space heating operation
- Extension to office and retail as well as space cooling possible

Methodology

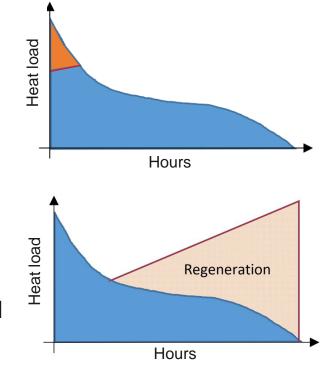
Methodology

- Investigations by simulation for design heat load of 60 kW – 240 kW
- Case studies
 - Existing building, space heating (SH) demand160 kWh/(m²yr) 80% SH, 20% domestic hot water (DHW)
 - Radiator emission system, supply temperature 55 °C
 - New building, SH demand 45 kWh/(m²yr) 33% SH, 66% DHW fraction Floor heating, supply temperature 35 °C
- DHW temperature 55 °C, tapping energy acc. to SIA 2024 plus 50% losses
- Weather data Zurich SMA normal / cold year
- Ground: 2.4 W/(mK) as standard for Swiss middleland grouting 2 W/(mK), varied to 0.85 W/(mK)
- Design to minimum probe length acc. to SIA 384/6:2021 "no decrease of average fluid temperature below -1.5 °C after 50 yrs", e.g. -3 °C / 0 °C

6 HP_sim&app23 Carnot User meeting 2023, June 23, 2023

Methodology

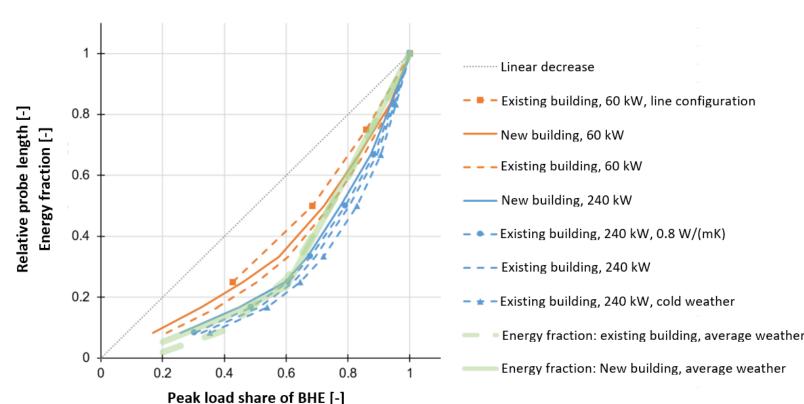
Investigated strategies


- Mitigate limitations of individual heat sources by multiple sources
 - Limitation noise in case of outdoor air source, space and depths restrictions for borehole heat exchangers

Strategy Peak load coverage

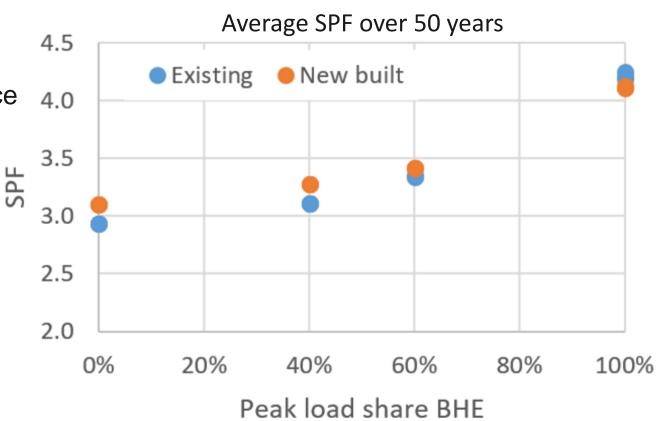
- Both sources can be reduced (e.g. design to 50% of heat source capacity at design heat load)
- · Efficiency improvement compared to air-source-only

Strategy Regeneration


- · Less ground probes and lower spacing in the ground probe field
- Also direct use of regeneration source possible
- Regeneration source can be refunded by the savings in the borehole field
- For higher capacity the strategies can also be combined

Results peak load coverage by ground source

- Disproportional savings of ground probes
- Approximation by energy fraction
- High impact: Field effect
 - System size
 - Compactness of probe field
- Lower impact
 - Properties grouting
 - Weather profile
 - Existing building or new building (DHW-tapping profile)



Strategy peak load coverage

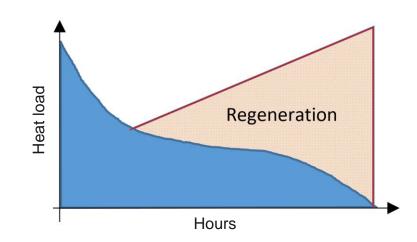
System performance

- SPF increasing with BHE fraction
- Existing vs. new built: hardly any difference
- 100% BHE-System:
 - SPF 4.9 in the first year
 - SPF 4.0 in the last year
- Peak load system:
 - SPF relatively constant over 50 years

Strategy peak load coverage

Cost comparison

- Peak load coverage can be cost-competitive
- In midsize and larger systems cost benefits
- With additional cooling also for smaller systems (not depicted)
- To mitigate limitations
 moderate extra cost tolerable
- Fossil bivalent systems do not have cost benefits (at prices as of June 2022)



Strategy regeneration

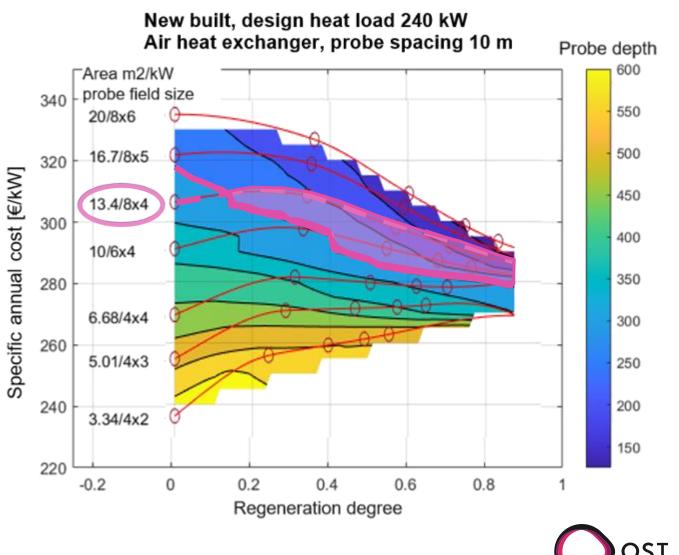
Strategy Regeneration

- Enable the application of heat pumps with limitations of an individual heat source
 - e.g. for space limitation by a lower number of ground probes with regeneration (ground source designed to cover design heat load)
 - Regeneration source can also be applied as second heat source
 => further reduction of use of primary heat source
- Efficiency benefits. e.g. by the use of the heat source with better temperature level
- Cost benefits by savings of investment cost for the ground probes to refund the regeneration source
- Research questions (with focus on economy)
 - How can be regenerated (favourable regeneration sources)?
 - Is it worthwhile to regenerate?
 - In which cases is regeneration necessary?
 - How much should be regenerated?

Strategy regeneration

Regeneration sources

- Solar Regeneration (PV/T, uncovered selective collector)
 - Well introduced
 - Experience with design, implementation and cost
 - Different suppliers
 - + architectural antegration, acceptance
 - limited for retrofit (roof size and condition, orientation)
- Air heat exchanger (AHX)
 - Less projects, less experience
 - Product variety by industry applications
 - Acceptance? (noise issue, architectural integration)
 - Less space requirement \rightarrow benefit retrofitting
- Ground water, river/lake water, district heat, waste heat



Strategy regeneration

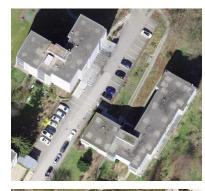
Depiction of cost optimised design

- Case study:
 - Heat load 240 kW
 - Borefield area 3200 m² (13.4 m²/kW)
 → Max. 32 probes at 10 m spacing
 - Depth limitation at ca. 300 m
 - → without regeneration not possible (at minimum ca. 15% regeneration)
 - \rightarrow min. cost at 60-85% regeneration rate
 - → specific annual cost 280 €/kW

Summary HP source

Take home messages

- Potential for different Integration strategies (peak load coverage, regeneration)
 - · Also combination of strategies possible (e.g. at higher capacities)
- Mitigation of source limitation of individual heat sources by integration
 - Enables the application of heat pumps with higher capacity in monovalent operation
 - In particular interesting for existing buildings and retrofit projects
 - Entirely renewable alternative to fossil peak load coverage
- Cost reduction by synergies of heat sources
 - Integration of multiple heat sources can be equally or more cost-effective than individual heat sources
- Efficiency potentials by synergies of heat sources
 - Use of best source temperatures, better temperature conditions by regeneration etc. can increase the overall performance



Perspectives

P&D Project boiler replacement

P&D of boiler replacement in two multi-family houses

- Replacement boiler of 200 kW in two multi-family house (treated area ca. 4200 m²)
- Original concept:
 - Ground probe field at 300 m with regeneration by air-source
 - Space restriction due to steep surroundings (limited to parking lot)
 - After first drilling additionally depth restriction to 120 m due to artesic water
- Present concept for P&D project
 - Larger air heat exchanger and ground as peak load coverage
 - Combination peak load coverage with regeneration can limit cost
 - Validation of simulation results and extended design recommendations
 - Control strategies for multi-source integration

Quelle: A+W

Thank you for your attention

