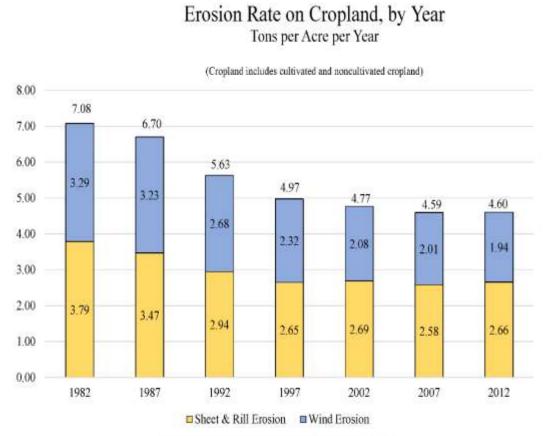
Advanced Methods for Agricultural and Agroenvironmental Monitoring


Emily Berg, Zhengyuan Zhu, Sarah Nusser, and Wayne Fuller

Outline

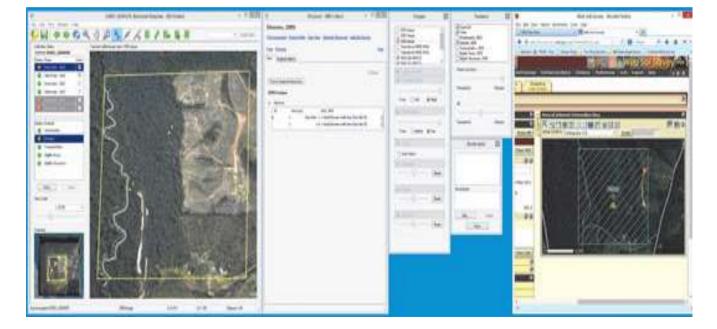
- 1. Introduction to the National Resources Inventory
- 2. Hierarchical Bayesian models for NRI county estimates
- 3. A compromise approach to spatially stratified sampling for the Conservation Effects Assessment Project

NRI Background -- Objectives

- Monitors natural resources and agriculture on nonfederal US land
- Inventory years
 - 1982, 1987, 1992, 1997,
 2000-2012
- Land cover/use
 - Corn, soybeans, urban
- Erosion
 - Water, wind
- Change over time

Column totals may not exactly match sum over type due to rounding.

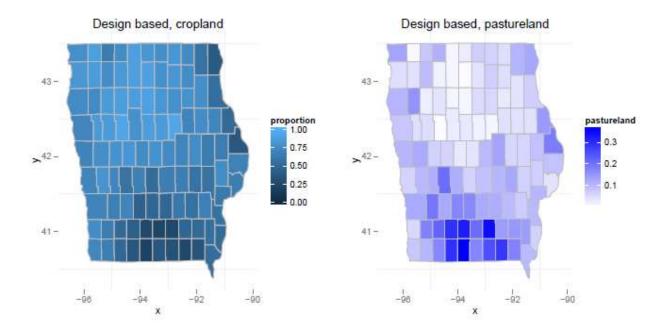
NRI Background – Sample Designs


- Area frame
 - Sampling unit = segment
 - 3 points per segment
- Foundation sample (1982-1997)
 - ~300,000 segments observed every 5 years
 - ~800,000 points
- Annual samples (2000-present)
 - Core panel ~40,000 segments observed every year
 - Rotation panels ~30,000 segments observed less frequently
 - Core and rotation are stratified samples of foundation

NRI Background – Data Collection

Data collection

- Interpretation of aerial photographs of sampled segments
- "Local data" administrative information for certain kinds of points
 - Ex: cropland, wetlands, soils



• Custom software

NRI: County Estimates

- Published estimation domains
 - State, region, nation
- Estimates are of interest for counties
 - Proportion of each county classified in different cover/use categories
 - Current estimates for counties can be judged unreliable
- Model-based small area estimation
 - Incorporate external auxiliary information
 - Borrow information from neighboring domains

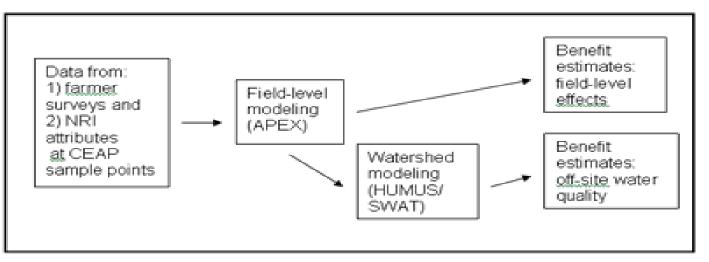
NRI County Level Estimation: Spatial Structure

	Cultivated Crop	Pasture
Geary's C	0.21	0.35
P-value	<0.001	<0.001

NRI County Level Estimation: Hierarchical Bayesian Model

- Model for NRI estimators: Generalized Dirichlet
 - Unequal sampling variances
 - Sum-to one restriction
 - Multivariate relationships preserved
- Model for true proportions: logistic-normal
 - Incorporates covariates obtained from satellite imagery
 - Conditionally autoregressive spatial structure
- Bayesian inference
 - Gibbs sampling

NRI County Level Estimation: Variance Comparison


• (Posterior variance)/(Est. variance of NRI)

	Cropland	Pasture	Remainder
Min	0.04	0.02	0.04
1 st Quartile	0.12	0.05	0.17
Median	0.16	0.08	0.27
Mean	0.21	0.14	0.31
3 rd Quartile	0.29	0.17	0.41
Max.	0.85	0.77	0.81

Conservation Effects Assessment Project

- Special interest in cropland points
 - Data collectors visit a subset of NRI points and collect more detailed information about crop managements and conservation practices

Sampling and Modeling Approach to Estimate Benefits of Conservation Practices

Conservation Effects Assessment Project

- Spatial spread desired for efficient sample designs
 - Points closer together are more similar than points farther apart
- Stratified sampling can improve spatial spread
- Information on the variability within a stratum is needed for variance estimation

Spatially Stratified Designs: Strengths and Weaknesses

- One per stratum select one point from each stratum
 - Good spatial spread
 - No design-unbiased variance estimator no estimate of within-stratum variance
- Two per stratum select two points from each stratum
 - Possibility of clustering within a stratum
 - Variance estimation possible

Illustration for sample size n = 6						
One per stratum	Stratum 1	Stratum 2	Stratum 3	Stratum 4	Stratum 5	Stratum 6
Two per stratum	Stratum 1		Stratum 2		Stratum 3	

Spatially Stratified Designs

- Combination of one per stratum and two per stratum sampling
- Form n/2 pairs of strata
- Select 2 from a randomly selected stratum of a randomly selected pair

Illustration for sample size n = 6						
One per stratum	Stratum 1	Stratum 2	Stratum 3	Stratum 4	Stratum 5	Stratum 6
Compromise	Pair 1	Pair 1	Pair 2	Pair 2	Pair 3	
# to select	Stratum 1 1	Stratum 2 1	Stratum 3 1	Stratum 4 1	Stratum 5 Select 2	Stratum 6 Select 0

Compromise Designs for CEAP

- Extension form K groups and apply the compromise procedure within each group
 - K = 2 is 2 per stratum
 - As K increases, design approaches 1 per stratum

Number to Select	Variance of Estimator	Variance of Variance Estimator X Number to select	Approx. Degrees of Freedom
2	1.50	5.00	54.0
3	1.33	4.00	53.3
4	1.25	5.17	36.3
5	1.20	6.40	25.4
10	1.10	16.29	7.5

• Within variance = between variance = 1

Summary

- NRI and CEAP use diverse advanced statistical methods for both estimation and sample design
- Examples presented exploit spatial structure
 - Model based estimation for county estimates
 - Spatially stratified designs for CEAP

Thank You!

- Acknowledgements:
 - Xin Wang
 - Cooperative Agreement No. 68-3A75-4-122 between the USDA NaturalResources Conservation Service and the Center for Survey Statistics and Methodology at Iowa State University