

La mutua interazione fra rischi antropici e rischi naturali. NaTech e resilienza dei territori: strumenti e metodi

Micaela Demichela, David Castro Rodriguez

SAfeR – Sicurezza Affidabilità e Rischi micaela.demichela@polito.it; david.castro@polito.it

LA GESTIONE DEL RISCHIO NATECH Accademia delle Scienze Palazzo Poggi - Università di Bologna - 24 MAGGIO 2024

Limitations and challenges in the Seveso III : State-of-the-Art

«on the control of major-accident hazards involving dangerous substances»

- Although Seveso III Directive (2012/18/EU) serves as a benchmark for industrial plants in Europe and globally, some recognized limitations are present:
 - The uncertainties involved in complex systems are not well addressed.
 - The temporal variability of the hazards and the system gradual degradation are just cited, but analysed separately.
 - Limited scope of hazard identification.
 - Regulatory uncertainties in risk prevention study validation.
 - Underestimation of High-Impact Low-Probability (HILP) Scenarios.
 - Frequent disconnection between technical and social or territorial factors.
 - Reporting criteria match non-Seveso facilities.
 - Differences in legal, geographical, and cultural contexts for transposing the 2012/18/EU Directive to the Member States.

Foreseen scenarios for the Climate Change impacts on Cl

European

hazardous substances»

Sendai Framework for Disaster Risk Reduction 2015 - 2030 **EU strategy** to make Europe more **resilient** to Multiple Climate Hazards (**Multi-hazards**) **affecting** the **same territory**. <u>Expected annual damage to critical infrastructure (Stoerk et al., 2018)</u>.

Industrial sector among the Critical Infrastructure (CI) with higher potential losses

Shift of paradigm

(HU 2010)

(UK 2023)

Different Resilience Approaches: Vulnerability awareness as common element

Territorial Resilience is a central topic in the debate on multi-hazards affecting SETSs.

Place-based procedure for characterizing the NaTech vulnerability

hazards contexts.

Focus on Nation/region (Large scale)

a) Pie-charts by region for industrial macro-sectors.

Higher industrialization at north

b) Density of lightning to the ground (lightning/year·km²).

Higher lightning density at north.

Focus on Nation/region (Large scale)

Focus on Region/Province (Large scale)

Punctual representation of ICI in Piedmont.

Allocation of buffer zones (Exclusion and observation areas).

Statistical analysis in the potential damaged areas at different scales (i.e., Vulnerable population for province).

Focus on Municipalities (Medium scale)

Focus on Municipalities (Medium scale): How the multi-risk tool works?

Expert from R3C group votation through a web application

III.-Participatory weighing.

OMPONENTI DEL	Caracteristiche	Pression	i	(Pericoli								
ISTEMA	Sensitività	CDS	OBS	OLD	ALU	ALA	IBO	FRA	SIS	RIR			
	A.1 Sensibilità paesaggistica	0,70	0,21	0,00	0,67	0,61	0,79	0,76	0,48	0,58			
. Ambiente e	A.2 Qualità ecologica	0,79	0,00	0,00	0.73	0,67	0.94		0,36	0,85			
aesaggio	A3 Intensità del consumo energetico	0,64	0.61	0,21	0,27	0,24	0,18	0,18	0,09	0,21			
	B.1 Consistenza del patrimonio culturale	0,27	0,58	0,06	0.82		0,61	0,73	0.94	0,52			
	B.2 Caratteristiche costruttive degli edifici (età)	0,30	0.94	0,00	0,55	0,61	0,39	0,45	0,82	0,33			
. Costruzioni, frastrutture, Beni	B.3 Autosuficenza energetica da FER	0,45	0.79	0,15	0,06	0,09	0,03	0,00	0,12	0,09			
ulturali e Paesaggio	B.4 Densità delle infrastrutture di comunicazione	0,61	0,27	0,18	0,61	0,55	0,64	0,64	0.70	0,64			
	B.5 Densità delle infrastrutture viabilistiche	0.73	0,18	0,15	0.85	0.85	0.70	0,73	0,88	0,79			
	C.1 Densità di popolazione	0,45	0,18	0,61	0,73		0,52	0,58	0,91				
Economia, polazione	C.2 Componente anziana	0,09	0,09	0.91	0,64	0,64	0,52	0,48	0,70	0,67			
. Economia, opolazione	C.3 Componente immigrata	0,21	0,06	0,30	0,27	0,27	0,21	0,21	0,27	0,24			
	C.4 Densità di attività produttive	0,42	0,09	0,12		0,67	0,58	0,55	0.70				

Mathematical Framework.

$$I_V = \alpha \cdot I_{PR} + (1 - \alpha) \cdot I_{HZ}$$

 I_{PR}^{IHZ} = Index of Hazards I_{PR} = Index of Pressures α = coefficient of "interest"; ($\alpha \in [0,1]$).

$$I_{HZ} = \sum_{w=1}^{W} \frac{\beta_w}{m_w p} \cdot \sum_{i=1}^{m_w} \sum_{k=1}^{p} CC(t)_k \cdot S_i \cdot b_{ik} \cdot HZ_k$$

where:

p = number of hazards.

 m_A = number of sensitivities in component A.

 $CC(t)_k$ = a factor that expresses the impact of climate change

 $CC(t)_k=1$) related to hazard k.

 S_i = indicator of sensitivity *i* in the specific cell.

 HZ_k = indicator of hazard k in the specific cell.

$$=\sum_{w=1}^{W}\frac{\beta_{w}}{m_{w}n}\cdot\sum_{i=1}^{m_{w}}\sum_{j=1}^{n}K_{ij}(t)\cdot S_{i}\cdot b_{ij}\cdot PR_{j}$$

where:

n = number of pressures.

 m_A = number of sensitivities in component A.

 $K_{ij}(t)$ = a factor that depends on the temporal nature of the pressure t_0 =2020 one can fix $K_{ij}(t_0)$ = 1).

 S_i = indicator of sensitivity *i* in the specific cell.

 PR_i = indicator of pressure *j* in the specific cell.

Multi-risk tool for vulnerability representation of sensible territorial elements.

Focus on Cluster/Plants (Industrial scale) : Proof of concept : Focus on ICI-territory

C: Economy and Population

combustion of hydrocarbons.

1 Critical Vulnerability

Implications

Vulnerability Scenario Characterization in an Industrial Context using a Natech Indicator and a Territorial Multi-Risk Approach

PROCEEDINGS

2^{1,4}, Micaela Demichela^{1,0}, Simone Beltramino^{2,d}, Mattia Scalas^{2,4}, Gr Brunetta^{2,1} and Antonello A. Barresi^{2,2}

ience and Technology (DISAT), Politecnico di Torino, Ita *devid costro@polita.it ⁰micaela demichela@pai antanello,barresi@polita.it al and Urban Studies and Planning (DIST) Politecnico di Torino, Ital mattie scales@polito.h Imattie scalas@polita.it

987 T

Future conferences

Finanziato dall'Unione europea **NextGenerationEU**

This study was carried out within the RETURN Extended Partnership and received funding from the European Union Next-GenerationEU (National Recovery and Resilience Plan - NRRP, Mission 4, Component 2, Investment 1.3 – D.D. 1243 2/8/2022, PE0000005)

Conclusions

- Data from the Italian inventory for Major Hazard Industries (MHIs) were grouped into industrial macro-sectors and illustrated by regions on national scale pie charts. These distributions were then correlated with meteorological or geophysical data of interest, from open access data, using the Function-Location approach.
- The development of a place-based procedure to establish safety distances, delineating exclusion, and observation areas around MHIs as buffer zones, assists in the identification of areas with high concentrations of establishments, where overlapping safety distances with neighbouring plants highlight potential implications for domino effects in case of NaTech events and enables the estimation of inhabitants in accident-prone areas.
- It also offers a swift and direct way to detect incompatibilities between existing or new establishments and minimum safety criteria for land use around Seveso sites, thus serving as an early detection system for territorial vulnerabilities in case of NaTech.
- The introduction of a GIS tool to assess municipal-scale territorial vulnerability employs a mathematical framework to calculate **systemic vulnerability**, initially neglected, integrating indicators within a hierarchical structure across three levels: systemic vulnerability, sensitivities, and multi-hazards. The resulting coloured maps effectively illustrate systemic vulnerability within a municipal context, providing **a comprehensive overview for decision-makers and stakeholders alike**.
- Summarizing, the application of advanced methods, integrating ICI attributes with their surrounding context across various scales, enriches the decision-making process in addressing NaTech events. This approach bridges the gap between technical and external factors, enhancing awareness against multiple hazards.

Schematization of vulnerability at different levels

Focus on Municipalities (Medium scale): How the multi-risk tool works?

Depending on the geometry of the input data - point, line, polygon - **the attribution** of the values obtained for each indicator **to the grid was carried out according to five criteria:** (i) point count (B1, ALA), (ii) sum of the point values (A3, B3, SIS), (iii) weighted sum of linear (B5) or areal elements (A1, A2, B2, B4, C4, CDS, OBS, IBO, FRA), (iv) average value of areas within the cell (C1, C2, C3, OLD) and (v) intersection between input polygons and each cell (ALU, RIR).

The values assigned to the cells of the matrix were normalized to obtain a standard metric that allows the integration among the indicators and the following operations.

Partial results were displayed in a 2550-row table – one for each 200x200 m cell that subdivides the territory - with 21 columns corresponding to each indicator

	Sensitivity Indicators													Pressur	es Indi	cators	Hazards Indicators						
FID_Grid	A1	A2	A3	B1	B2	B3	B4	B5	C1	C2	C3	C4		CDS	OBS	OLD	ALU	ALA	IBO	FRA	SIS	RIR	
0	-0.630921186	-0.92651139	-0.86295636 Res	letce Framework, Moncalleri		@ PHT 3***	-0.134641194	esilence Framework_M	oncalieri	@ ****	378168	eslience Framework, Mo	oncallert	@ ****	1 64981998	-0.08288189	Resilence Framework_Moncale	6	@ **** 1 ** 492	Resilence Framework_Mon	alei	@ NT 195	
1	-0.630921186	-0.92651139	-0.86295636 0				-0.134641194	01		-	378168	1		~	64981998	-0.08288189	0.01	~	492	21			
2	-0.630921106	-0.92651139	-0.00293030		-		-0.134641194		-		378168		-		64901390	-0.00200109			492		1		
4	-0.630921186	-0.92651139	-0.86295636	0	-		-0 134641194		~~~~		378168		\int	The second	64981998	-0.08288189		100	492		~		
5	-0.630921186	-0.92651139	-0.86295636			2	-0.134641194	for t	-	10.00	378168	FT		1-0-0	64981998	-0.08288189			492	m		-	
6	-0.630921186	-0.92651139	-0.86295636	ALE NO.			-0.134641194				378168				64981998	-0.08288189			492		A SPACE IN ALL		
7	-0.630921186	-0.92651139	-0.86295636	6			-0.134641194	Tel.	Carlos and		378168	FIL			64981998	-0.08288189			492	6			
8	-0.630921186	-0.92651139	-0.86295636	Salta And			-0.134641194	1.24	100 M	-	378168	1000			64981998	-0.08288189	A CONTRACT		492	and the second			
9	-0.630921186	-0.92651139	-0.86295636	100000000000000000000000000000000000000		5	-0.134641194	1.1	1.2	and the second	378168	1000	**	Sales and a second	64981998	-0.08288189	and the second	A Contraction of the	7 492	100	ALL CONTRACT AND	5	
10	-0.630921186	-0.92651139	-0.86295636	Part Line		7 VI	-0.134641194	and the	Carl Brating		378168	100		R. Carter	V 64981998	-0.08288189		Contract of the	492	Real Brown	A DESIGN	V	
11	-0.630921186	-0.92651139	-0.86295636	A SE AND	No.		-0.134641194	ALC: N		Star 1	378168	1		C. S. Daniel	64981998	-0.08288189		Contraction (Section 1997)	492	1 States	The second		
12	-0.630921186	-0.92651139	-0.86295636	Para la la	the I In		-0.134641194	free a	11 11	St may	378168	1			64981998	-0.08288189		AN ALL A	492	12	「七日間		
13	-0.630921186	-0.92651139	-0.86295636	1		1	-0.134641194	A BELL	1	and was	378168	1 Martin	1	the second	64981998	-0.08288189		A DE LAND AND	492	Marth. 11	A MULTING	2	
14	-0.630921186	-0.92651139	-0.86295636	Nor I			-0.134641194	Sec. 1	and the	In Contraction	378168	5	-		54981998	-0.08288189		BAS BEAME	492	1 1	E. Statis		
15	-0.630921186	-0.92651139	-0.86295636			1	-0.134641194	2			378168	2			64981998	-0.08288189	200		492	5	and a	1	
16	-0.630921186	-0.92651139	-0.86295636	V	1 /		-0.134641194			1	378168			201	64981998	-0.08288189	-	State 1	492	5	1 . /		
17	-0.630921106	-0.92651139	-0.86295636) (-0.134641194		1		378168		1	1.1.1	64961996	-0.06266169		And the second second	492) [
10	-0.630921106	0.110465712	-0.00293030	jenda			-0.134641194	egenda		44	496744	egenda	/	1 11	04301330	-0.00200109			492	Legenda			
20	0.630921100	0.360845042	0.86205636 81	5-			0 134641104	15	\sim	1	957512	4		1	64081008	1 641508345	Legenda		492	SIS /	?		
20	-0.630921186	1.004523256	-0.86295636	0.0-0.2	5		-0.134641194	0.0-0.2	-		378168	0.0-0.2	-	2	64981998	-1.641598352	ALU	and the	492	0.0-0.2			
1156	1.887278201	0 250948762	-0.85532048	0.3 - 0.4)		-0.134641194	05-06	2		395452	0.5-0.6	2		93413865	-1.043142585	0.1-0.5		492	0.3 - 0.4)	-	
1157	2.157085278	0.342454235	-0.86295636	05-08	- m	\checkmark	-0.134641194	0.7 - 0.8	7 1	~~	183664	0.7 - 0.8	~	pr v	93413865	-1.42053039	0.6 - 0.8		492	0.5-0.6	S M	\checkmark	
1158	1.938670031	0.811419791	-0.86295636	0.9-1.0	25		-0.134641194	0.9 - 1.0	0		128195	0.9 - 1.0	<	1	64981998	-1.306041334	0.8 - 1.0		492	0.9-1.0	25		
1159	1.887278201	1.320510743	-0.86295636	-0.077692432	-0.448498616	-0.065815066	-0.134641194	0.249234277	-0.30541371	0.460220155	1.347556051	0.20497198		-0.223230427	-0.64981998	-0.764820341	-0.137212246	0.750478806	-0.188236492	-0.034455954	-0.192987599	-0.393943215	
1160	-0.630921186	1.004523256	-0.86295636	-0.077692432	-0.448498616	-0.065815066	-0.134641194	-0.5416749	-0.30889763	0.710337329	0.948983812	0.20497198		-0.223230427	-0.64981998	0.371743744	-0.137212246	0.750478806	-0.188236492	-0.034455954	-0.192987599	-0.393943215	
1161	0.808049892	0.709188546	-0.86295636	-0.077692432	-0.448498616	-0.065815066	-0.134641194	-0.5416749	-0.30889763	0.710337329	0.948983812	0.20497198		-0.223230427	-0.64981998	0.371743744	-0.137212246	2.099227437	-0.188236492	-0.034455954	-0.192987599	-0.393943215	
1162	-0.630921186	0.570040461	-0.86295636	-0.077692432	-0.448498616	-0.065815066	-0.134641194	-0.5416749	-0.30889763	0.710337329	0.948983812	0.19565066		-0.223230427	-0.64981998	0.371743744	-0.137212246	2.099227437	-0.188236492	-0.034455954	-0.192987599	-0.316309676	
1163	-0.451049801	0.618316327	-0.86295636	-0.077692432	-0.448498616	-0.065815066	-0.134641194	-0.5416749	-0.30889763	0.710337329	0.948983812	0.20497198		-0.223230427	-0.64981998	0.371743744	-0.137212246	1.424853121	-0.188236492	-0.034455954	-0.192987599	-0.393943215	
1164	-0.181242724	0.403756923	-0.86295636	-0.077692432	0.143063344	-0.065815066	-0.134641194	2.025741964	-0.30889763	0.710337329	0.948983812	0.20497198		-0.223230427	1.593413865	0.371743744	-0.137212246	1.424853121	-0.188236492	-0.034455954	-0.192987599	-0.318294622	
1165	0.628178507	0.714868059	-0.86295636	-0.077692432	-0.448498616	-0.065815066	-0.134641194	1.80976124	-0.30889763	0.710337329	0.948983812	0.08994256		-0.223230427	-0.64981998	0.371743744	-0.137212246	1.424853121	-0.188236492	-0.034455954	-0.192987599	-0.393943215	
1166	0.538242815	0.339740838	-0.85929245	-0.077692432	0.143063344	-0.062054635	7.950217483	3.232444729	-0.30726861	0.058246051	0.227601066	0.11320165		-0.223230427	-0.64981998	0.371743744	-0.137212246	1.424853121	-0.188236492	-0.034455954	-0.192987599	-0.244682113	
1167	0.808049892	0.092645786	-0.86295636	-0.077692432	4.960067852	-0.065815066	-0.134641194	2.390966259	-0.30563959	-0.59384523	-0.49378168	0.18146883		-0.223230427	0.551912469	-1.901384426	-0.137212246	-0.598269825	-0.188236492	-0.034455954	-0.192987599	-0.28231053	
1168	0.628178507	0.320385268	-0.86295636	-0.077692432	5.09/394761	-0.065815066	-0.134641194	4.177853143	-0.28566892	-0.50200137	-0.05350111	194618312		-0.223230427	0.4/1/96942	-0.992133158	-0.137212246	-0.596269825	-0.188236492	-0.034455954	-0.192987599	0.126177594	
1169	-0.091307032	0.460322583	0.000184278	-0.077692432	1.621968245	1.503608533	3.907788144	2.23/48/811	-0.20566892	-0.50200137	-0.05350111	470027339		-0.223230427	1.185553125	-0.992133158	-0.13/212246	-0.596269625	-0.166236492	-0.034455954	5.670223682	0.170916752	
11/0	0.449307433	0.312061757	-0.40510541	-0.077692432	4 481184365	0.342516660	3 007798144	1 2500772202	-0.2323138	-0.55261001	3 353502067	024335907		-0.223230427	0.471706943	-0.992133131	-0.13/212240	-0.090209025	-0.100230492	0.034455954	0.102097500	0.021320330	
1177	0.449307122	0.478952714	0.72105561	-0.077692432	4 570772046	0.069636713	0.124641104	1 945052099	-0.30560357	-0.59304523	3 353502067	005975225		0 223230427	0.606120327	-0.00200109	-0.137212240	0.590209025	-0.100230492	0.024455054	-0.102007500	0.246170534	
1172	0 268436739	0 166372049	-0 29837505	-0.077692432	4 357942211	0.513639305	-0.134641104	2 664565017	-0 30560357	-0.59384523	3 353592967	835516059		0 223230427	0.471796942	-0.08288189	-0.137212240	-0.590209025	-0.188236492	-0.034455954	5,670223692	-0.048066344	
11/3	3.200433130	0.100012049	-0.20001000	-9.011002432		0.0100000000	-0.104041134	E.004000017	-0.000000001	-9.00004020	v.vooosea01 0	000010000		-0.223230421	0.411100042	-0.00200103	-0.137212240	-9.090209023	-0.100200432	-0.004400004	0.01VEE000E	-3.040000340	