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1. Role of Sea Ice and Melt Ponds in Climate 3. A Neural Network Approach to

Parametrisation
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considerable uncertainty.

Image credit: Donald Perovich Work in sections 2-3 is submitted to the Journal of Computational Science,

and is available on arXiy, "Parameter sensitivity analysis of a sea ice melt pond

parametrisation and its emulation using neural networks'

2. Uncertainty in Current Sea Ice Models 4. Developing a data driven emulator
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Summary/Conclusions

1) Current representation of melt ponds have considerable uncertainty. This uncertainty has substantial impacts on key predicted sea ice variables.
2)  We demonstrate an alternative approach of neural networks replacing the parametrisation is possible, and shift from perfect or model data to observational data.
3) From observational data, we create an emulator of melt pond fraction and sea ice albedo.
4)  Using this observational emulator in neXtSIM-DG is one of our next stages of work — and the emulator will be available for modelling centres around the world, and
potentially used to fill in gaps in the melt pond observational record.
5) Our work adds to the wider discussion on using machine learning to replace physical parametrisations in climate models.
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