

Development of existing and future DA systems at KIAPS

Adam Clayton (adam@kiaps.org), In-Hyuk Kwon, Jeonho Kang, Kyung-Hee Seol Korea Institute of Atmospheric Prediction Systems (KIAPS)

1 **KIAPS** and the **KIAPS DA** group

KIAPS founded in 2011 to develop new operational forecasting systems for the Korea Meteorological Administration (KMA)

- 72 scientists and software engineers
- 30 DA scientists:

(Regular international recruitment)

Future DA systems 4

Weakly-coupled atmosphere-ocean DA

Target: Earth System NWP system, aimed at skillful forecasting out to T+30 days **Model**: **KIM-CES** (KIM - Coupled Earth System), including NEMO ocean.

- Weakly-coupled atmosphere-ocean DA **DA**: •
 - 6-hourly cycling with 6-hour DA windows (like the UK Met Office)
 - NEMOVAR 3DVar-FGAT system for the NEMO component, adapted from an ocean-only DA system with 24-hour cycles.

Weakly Coupled DA

2 **Operational global NWP system**

Korea Integrated Model (KIM)

- Atmosphere land model
- Cubed-sphere grid ; spectral-element method ; non-hydrostatic dynamics
- 91 levels ; 12 km deterministic grid ; 32 km ensemble grid

Issue: Earlier ocean cutoff times will reduce number of usable observations:

Ocean-only DA cutoff times <a>Atmospheric DA-like cutoff times

Usable observations

Initial solution: Add "catch-up" cycles with later observation cutoff times

Status: Initial NWP suites almost complete. Cycling experiments to start shortly.

Ongoing development of hybrid-4DEnVar 3

1. Improvements to observation operator formulation:

- 2. Improvements to use of ensemble data:

High-resolution LETKF

Target: High-resolution forecasting system for East Asia

Final model: KIM-LAM (limited-area version of KIM, currently under development) "Testbed" model: "KIM-meso" – 3 km WRF, with KIM-like physics.

- **DA**: 20-member LETKF
 - Direct assimilation of gridded Korean radar reflectivity observations
 - Simulated reflectivities calculated using WDM7 reflectivity operator: $dBZ = 10. \times \log(Ze_{rain} + Ze_{snow} + Ze_{arupel} + Ze_{hail})$

	01	
Observation Type		Variables provided by KPOP
Conventional	Sonde	T, U, V, Q
	Surface	T, Q, RH, U, V, Ps
	Aircraft	T, U, V
Satellite-based wind	AMV	U, V
	SCATWIND	U, V
Microwave Radiance	AMSUA	ТВ
	MHS	ТВ
	ATMS	ТВ
	MWHS2	ТВ
	AMSR2	ТВ
Infrared Radiance	IASI	ТВ
	CSRGK2A	ТВ
Radio Occultation	GPSRO	BA

Introducing waveband localization

- Introducing use of time-lagged and time-shifted ensemble data
- 3. Unifying static covariances with ensemble-based covariances:
- 4. Improvements to assimilation of "all-sky" satellite radiances Software refactoring and performance improvements 5.

Simulated radar reflectivities for individual ensemble members

Status: System mostly complete. Cycling experiments to start shortly.

5 Summary

- The operational KIM NWP system is giving world-class performance, despite clear weaknesses in our hybrid-4DEnVar system. (Section 3) Addressing these weaknesses is a major focus.
- Development of coupled and high-resolution NWP now moving from the "system building" stage to the scientific analysis stage.

9th International Symposium on Data Assimilation | 16–20 October 2023

