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Multilevel Monte Carlo (MLMC) and ensemble Data Assimilation

• Already tried with EnKFs and in small dimensions (Hoel et al., 2016)

• Here: Ensemble variational DA based on an Ensemble of Data Assimilations (EDA)
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Ensemble members 𝐱1 … 𝐱𝑁 from an EDA (𝑁 independent

perturbed forecast-analysis systems)



Hierarchy of grids

Let 𝑓ℓ: ℝ𝑛 ↦ ℝ, 1 ≤ ℓ ≤ 𝐿 be a 
hierarchy of simulators.

Goal: Estimate the scalar mean 
𝜇𝐿 ≔ 𝔼 𝑓𝐿 𝑋 , for some random 
vector 𝑋
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Simple Monte Carlo (MC) estimator
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• Bias: 𝔼 𝜇𝐿
𝑁 − 𝜇𝐿 = 0

• Variance of the estimator (sampling noise):
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with independent members 𝑓𝐿 𝑋 𝑖
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MLMC estimation of the mean  (Giles, 2008)
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Quasi-telescopic sum. 

Expectations 𝜇ℓ − 𝜇ℓ−1 cancel out: no bias

Same stochastic inputs for both 

ensembles in a correction term
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Variance of the multilevel estimator
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Yes, if either:

• 𝑁ℓ is large

• 𝒱ℓ is small

 𝒱ℓ =  𝕍 𝑓ℓ 𝑋  − 𝑓ℓ−1(𝑋) = 𝕍 𝑓ℓ 𝑋  + 𝕍 𝑓ℓ−1(𝑋) − 2 Cov 𝑓ℓ 𝑋 , 𝑓ℓ−1 𝑋
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Generalization to covariance matrices 
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Experiments with OOPS-JEDI quasi-geostrophic model

• 2-layer model.

• 79 × 240 × 2 grid points

• About 60 positive Lyapunov 
exponents

• Model variable: stream function 
or potential vorticity. 
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Ensemble generation

• Background generation from truth 

run: 

𝐱b = 𝐱t + 𝛜, 𝛜 ∼ 𝒩 𝟎, 𝐁

• Ensemble generation from 12h 

forecasts with perturbed initial 

conditions: 

𝐱𝑘
f =  ℳ 𝐱b + 𝛜𝑘 , 𝛜𝑘 ∼ 𝒩 𝟎, 𝐁
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Introducing a hierarchy of low-fidelity models

• Forecasts run on nested grids with half horizontal resolution:
• ℓ = 4:  79 × 240 

• ℓ = 3:  39 × 120

• ℓ = 2:  19 × 60

• ℓ = 1:  9 × 30

• Sample generation on grid ℓ:
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𝐓𝐿←ℓ ℳℓ 𝐓ℓ←𝐿 𝐱b + 𝛜𝑘  

Bicubic interpolation operators



Ensemble spread & inter-level coupling
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Ensemble spread & inter-level coupling
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Ensemble spread & inter-level coupling
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Optimal member allocation and theoretical gain



Variance reduced by 3: 

Tripled effective ensemble size
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Empirical impact on B estimation



Focus on a single column of B

Reference estimated with MC 

and 10,000 members
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MC vs MLMC
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Empirical impact on the analysis



Problem: Multilevel B has negative eigenvalues…

• Possible solutions?
• Make it positive semidefinite (PSD) by construction? (Maurais et al., 2023)

• Get nearest PSD matrix by removing negative eigenvalues? (Hoel et al., 2016)

• Rebuild B with absolute values of the eigenvalues?

• Hybridization?

• …

• Can we use a non-PSD B? The cost function is not convex anymore…
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Results
• 10 iterations of a B-Preconditioned Conjugate Gradient, 

with non-PSD checks for MLMC

• Algorithm stops when facing a negative 𝐵-“norm”

• After minimization, back-track to iteration with minimum residual. 

• Independent localization tuning for MC and MLMC. 

• 200 analyses for each experiment

• Random observation networks, 1% grid points observed.

• Random observation errors

• Random ensembles for MC and MLMC, both with computational cost 20 

fine simulations

• Best achievable performance given by (unlocalized) MC 

with 10,000 members
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Conclusion

• Multilevel Monte Carlo methods 

provide a way to leverage low-fidelity 

simulators without introducing bias

• Experiments on a QG model show 

improved reconstruction of an 

ensemble background error 

covariance matrix.

• Using this ensemble background error 

covariance matrix can improve the 

accuracy of the analysis.

• Non-PSDness of the multilevel 

covariance matrix still to understand 

and tackle…

• Experiments were based on stochastic 

coupling from initial conditions. In a 

cycled EDA, stochastic coupling would 

be weaker.

• Impact on subsequent forecasts not 

tested

• MLMC would impact EPS design
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Other possible applications…

• Lower fidelity models could also 
be ML surrogates, runs at single 
or half precision, runs with 
simplified physics, with 
hydrostatic assumptions…

• Lower fidelity can come from the 
analysis step: simplified scheme, 
with less iterations, less 
observations…

• Applications to other statistics 
possible: variance field, mean 
field, quantiles, probability of 
exceeding a threshold, pdfs…
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Correct way to build multi-fidelity estimators: 
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Unbiased Estimators. SIAM/ASA Journal on Uncertainty 
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Adding localization to a multilevel 𝐵

• Localization should be applied independently to each term

𝐿 ∘ ෠𝐵 = 𝐿 ∘ ෢𝐵1
(1)

 + 𝐿 ∘ ෢𝐵2
2

− 𝐿 ∘ ෢𝐵1
(2)

+  ⋯

• Cost still reasonable if applied on reduced space, e.g., before 
interpolation:

𝐿fine ∘ 𝑃𝑋 𝑃𝑋 𝑡 ≈ 𝑃 𝐿coarse ∘ 𝑋𝑋𝑡 𝑃𝑡 

• Having different localizations introduces additional bias. But this is what 
localization does… An optimal localization theory can be devised 
(Destouches et al., 2023)
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Allocating samples

• Costs assumed proportional to 
number of grid points and time 
steps

• 𝒱ℓ estimated from 100 members 
coupled across all levels

• Optimal sample allocation with 
weighted MLMC
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