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Data Assimilation

Analysis

Forecast
Goal of data assimilation is to combine a background forecast and
observations in an optimal way.
Data assimilation causes spurious gravity wave noise that has the
potential to influence the model dynamics and degrade the forecast.
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What is imbalance?

Example:

Real World Model

Measure water level Update water level

Pour the water in all at once.
Pour the water in slowly such that the water level adjusts
gradually.
Pour the water in drop by drop.

Different ways to update the water level:

The way the model state gets updated influences the spin-up of the model and the effectiveness of the data assimilation.



Measure imbalance with three different types of diagnostics:
Surface pressure tendencies (classic way)
Vertical velocity variance in the vincinity of the convection (Lange et al., 2017)
Deviations from the weak temperature gradient approximation (Craig and Selz, 2018)

Strategy:
Use different data assimilation techniques to produce a set of analyses.
The data assimilation techniques are chosen such that we expect different degrees of imbalance in the analyses.

Research Questions:
 Do the different diagnostics measure the same kind of imbalance?
 Do they measure differences in the performance of data assimilation methods?

a.
b.
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Goals of this project: Measure the imbalance produced in a convective-scale DA system.



x

z

Assumption: Deviations within the atmospheric column are measurable at the ground (hydrostatic balance)
Domain integrated absolute mean (DPSDT)

Surface Pressure Tendencies (classic way, Lynch and Huang, 1992)

Imbalance metrics: Detection of noise in the surface pressure
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surface pressure perturbation

Works well on the synoptic scale, where hydrostatic balance holds.
On the convective scale non-hydrostatic (internal) gravity waves play an
important role.
Are they detectable in the surface pressure?



convective feature

vincinity
region

outer region

DBZ > 5

Hypothesis: Enhanced vertical velocity variance in the vincinity of
the storms is an indication of gravity wave noise.
Masking algorithm based on DBZ threshold values
Detect abundance of w in near convective environment
Partitioned variance of vertical velocity in the different masking
regions

Vertical motion diagnostic (Lange et al., 2017):
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Figure: Radar reflectivity, idealized experiment from Lange et al., 2017

Imbalance metrics: Abundance of vertical velocity in the vincinity of convection



Imbalance metrics: Abundance of vertical velocity in the vincinity of convection
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convective feature

vincinity
region

outer region

DBZ > 5

Hypothesis: Enhanced vertical velocity variance in the vincinity of
the storms is an indication of gravity wave noise.
Masking algorithm based on DBZ threshold values
Detect abundance of w in near convective environment
Partitioned variance of vertical velocity in the different masking
regions

Vertical motion diagnostic (Lange et al., 2017):



wWTG =
qθ
∂zθ0

"diabatic heating"
"vertical gradient of potential temperature"=

heat source

vertical ascent

transient waves

balanced flow

unbalanced flow
x

z

Weak temperature gradient (WTG) balance:

The response to a diabatic heat source is vertical ascent.
Widely used in the tropics.
Approximately valid in the mid-latitudes. (Klein, 2010; Craig and Selz, 2018)

Imbalance metrics: Departures from the weak temperature gradient balance
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wres = wWTG - w

Departures from WTG balance indicate transient motions:

background gradientDomain integrated mean absolute value of wres



Experimental set-up: ICON-KENDA simulations, near-operational set-up
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Two case studies: weak synoptic forcing strong synoptic forcing

Figure: Model data, column maximum radar refelctivity, grey box: model domain, blue box: evaluation domain 



noDA: Control run, no data assimilation between 12:00 and 14:00 UTC

LHN: Latent heat nudging from 12:00 to 13:00 UTC, switched off at 13:00

LETKF: LETKF at 13:00 UTC

IAU: LETKF with incremental analysis update (IAU)

13:00

Experimental set-up: ICON-KENDA simulations, near-operational set-up
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Data assimilation experiments: starting from reference experiment with hourly cycling, assimilation of conventional obs, radar, and
visible satellite images, latent heat nudging, 2 km resolution.

time

reference
experiment

12:00 14:00
13:0512:55

evaluation time window

Simulation has 10 ensemble members.
Results are shown for the first ensemble member.

free forecast



weak synoptic forcing

Rain rate in the experiments
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Enhanced rain in the LHN experiment
Spin-up after LETKF DA is visible in the LETKF and IAU experiments.

strong synoptic forcing



Rain rate in the experiments
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Enhanced rain in the LHN experiment
Spin-up after LETKF DA is visible in the LETKF and IAU experiments.

More convection in the LHN
run = more imbalance?

weak synoptic forcing strong synoptic forcing



Surface pressure tendencies: Domain absolute mean (DPSDT)
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Biggest response in LETKF run
IAU reduces the initial peak
LHN is only slightly increased as compared to the control run

weak synoptic forcing strong synoptic forcing



Surface pressure tendencies: Domain absolute mean (DPSDT)

Results 9 / 13

Biggest response in LETKF run
IAU reduces the initial peak
LHN is only slightly increased as compared to the control run

LHN more in balance
than LETKF?

weak synoptic forcing strong synoptic forcing



convective feature

vincinity
region

outer region

DBZ > 5

Vertical motion diagnostic – vincinity mask

Results

LHN highest standard deviation of w in the vincinity
Model spin-up is visible in the vincinity mask for LETKF and IAU.
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weak synoptic forcing strong synoptic forcing
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Vertical motion diagnostic – vincinity mask

Results

LHN highest standard deviation of w in the vincinity
Model spin-up is visible in the vincinity mask for LETKF and IAU.
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weak synoptic forcing strong synoptic forcing

LHN less in balance
than LETKF?



Weak temperature gradient diagnostic

Results

LHN highest departures from the WTG vertical velocity
Model spin-up is visible in the departures for LETKF and IAU (strong forcing).
Linear correlation between the amount of rain and WTG departures? Linear correction for the amount of
precipitation

Results are very
similar to VMD
results in the
vincinity mask.
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weak synoptic forcing strong synoptic forcing



Relations of the different methods

Results 12/ 13



noise in the vincinity

Relations of the different methods
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biggest WTG departures (noise) in the
vincinity

very different spatial pattern



Weak Temperature Gradient DepartureSurface Pressure Tendency

Summary
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What does this imply for practical data assimilation?

Surface pressure tendencies seem to measure a different kind of imbalance
than the weak temperature gradient diagnostic or the vertical velocity
masking.

Systematic difference between LHN and LETKF
imbalance (expected)

Surface pressure tendencies more sensitive to the inital
shock of the LETKF update

Weak temperature gradient departures largest for LHN
(consistent with vertical motion diagnostic)
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Appendix: Linear relation: precipitation vs. wres

Appendix



Relations of the different methods – LETKF vs LHN

Results



No masking in these plots
Upper row: standard deviation of w in the domain
Lower row: mean absolute of w in the domain
In contrast to DPSDT, LHN shows the highest values

Standard deviation: LETKF decreases w.r.t control run
Mean absolute: LETKF increases the  w.r.t control run
(strong forcing case)

Quadratic norm: higher weighting of high values, strong
updrafts inside the convection.
Linear norm: equal weighting of low and high values of w.

Appendix: Vertical motion diagnostic

Results



No Masking in these plots
Upper row: standard deviation of w in the domain
Lower row: mean absolute of w in the domain
In contrast to DPSDT, LHN shows the highest values

Standard deviation: LETKF decreases w.r.t control run
Mean absolute: LETKF increases the  w.r.t control run
(strong forcing case)

Appendix: Vertical motion diagnostic

Results

Quadratic norm: higher weighting of high values, strong
updrafts inside the convection.
Linear norm: equal weighting of low and high values of w.

LETKF weakens the convective updrafts?
LETKF creates noise in the vincinity of the convection?


