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Qualitative classification of the linearity
Chapter 5, Rodgers (2000)

• Linear: when the forward model can be put in the form of  and any a priori is 
Gaussian; very few practical problems are truly linear.


• Nearly linear: problems which are non-linear, but for which a linearisation about some 
prior state is adequate to find a solution.


• Moderately non-linear: problems where linearisation is adequate for the error 
analysis, but not for finding a solution. Many problems are of this kind.


• Grossly non-linear: problems which are non-linear even within the range of the errors.


If the problems is not too non-linear, Newton iteration is a straightforward numerical 
method for finding the zero of the gradient of the the cost function .

y = Kx

J
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Questions

The exact Newton (EN) and conjugate gradient (CG) methods 
are compared using the maximum likelihood ensemble filter 
(MLEF, Zupanski 2005).

1.How does EN or CG minimize benchmark functions?

2.How does an ensemble approximation of the gradient and 

Hessian matrix affect optimization with EN or CG?

3.How does EN or CG perform in cycled experiments with a 

simple model?
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Nonlinear least-square problems
Similarities between benchmark and cost functions

• Booth function: 


• Rosenbrock function: 


• Cost function: 




• Nonlinear least-square problems: 

f(x, y) = (x + 2y − 7)2 + (2x + y − 5)2

f(x, y) = (1 − x)2 + 100(y−x2)2

J(x) =
1
2

(x − xf)TB−1(x − xf) +
1
2 [y − H(x)]T R−1 [y − H(x)]

f(x) =
1
2

m

∑
i

[ fi(x)]2
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The exact Newton method

The Hessian matrix is used to solve the Newton equation.


1. Compute the gradient  and Hessian matrix  for a 
quadratic approximation with a descent vector : 




2. Solve the Newton equation .


3. Update the state: . 
The exact Newton (EN) method uses a unit step size 

gk = ∇fk Gk = ∇2fk
dk = x − xk

f(xk + dk) ≈ f(xk) + gT
k dk +

1
2

dT
k Gkdk

Gkdk = − gk

xk+1 = xk − αkG−1
k gk

αk = 1
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The Gauss–Newton method

The gradient and Hessian matrix is approximated with the Jacobian matrix.


1. Compute the Jacobian matrix  of the residual vector 

.


2. Approximate the gradient  and Hessian matrix .


3. Solve the Newton equation for the descent vector 
.

F =
∂f
∂x

f = (f1(x) f2(x) … fm(x))T

g = FTf G = FTF

d = − G−1g = − (FTF)−1FTf
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The conjugate gradient method

1. Initialize the descent direction  where .


2. Compute a step length  with .


3. Update the state with .


4. Update the descent direction with   

where  and .


The Hessian matrix can be used for preconditioning .

d0 = −g0 g0 = ∇f(x0)

αk f(xk + αkdk) = min
α

f(xk + αdk)

xk+1 = xk + αkdk

dk+1 = − gk+1 + βk+1dk

gk+1 = ∇f(xk+1) βk+1 = max [0,
gT

k+1(gk+1 − gk)
gT

k gk ]
x′ = G−T/2x
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Optimization of benchmark functions

(a) (b)

f(x, y) = (x + 2y − 7)2 + (2x + y − 5)2 f(x, y) = (1 − x)2 + 100(y − x2)2

EN and PCG 
converge in 
a single step.

EN and GN 
climbs the hill.

PCG travels 
longer than CG.
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The maximum likelihood ensemble filter
Zupanski (2005)

• Cost function  

where  is the state,  is the control forecast,  is the observation and  and  are forecast and 
observation error covariance matrices, respectively.


• Each column of the square root of  is forecast perturbations.


, , 


• Represent the departure by a linear combination .


• Cost function 

J(x) =
1
2

(x − xf)TP−1
f (x − xf) +

1
2 [y − H(x)]T R−1 [y − H(x)]

x xf y B R

Pf

P1/2
f = [pf

1 pf
2 ⋯ pf

k] pf
j = M(xa + pa

j ) − M(xa) = xf
j − xf pa

j = xa
j − xa

x − xf = P1/2
f w

J(w) =
1
2

wTw+
1
2 [y − H(x)]T R−1 [y − H(x)]
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Hessian preconditioning

•  where  and  is the Hessian matrix.


•  where  is the Jacobian matrix.


• Alternatively , 


• 


• 


• Update ensemble with .

x − xf = P1/2
f (I + C)−T/2ζ C = ZTZ I + C

Z = R−1/2HP1/2
f H = ∂H/∂x

Z = [z1 z2 ⋯ zk] zj = R−1/2 [H(xf + pf
j) − H(xf)]

J(ζ) =
1
2

ζT(I + C)−1ζ+
1
2 [y − H(x)]T R−1 [y − H(x)]

∇ζ J = (I + C)−1ζ − (I + C)−1/2ZTR−1/2 [y − H(x)]
P1/2

a = P1/2
f (I + C(xa))−T/2
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The exact Newton method in MLEF
A proposed method

• 


• Approximate 


• Solve the Newton equation  without computing the inverse, 
where ,  and  or 

 with .

J(w) =
1
2

wTw +
1
2 [y − H(x)]T R−1 [y − H(x)]

J(w + d) ≈ J(w) + ∇Jd +
1
2

dT ∇2Jd

∇2Jd = − ∇J
∇J = w−YTR−1 [y − H(x)] ∇2J = I + YTR−1Y Y = HP1/2

f
Y = [y1 y2 ⋯ yk] yj = H(xf + pf

j) − H(xf)
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How does MLEF with EN differ from the original?

• The cost function is minimized for the ensemble weight .


• The Newton equation is solved exactly, avoiding a line search subproblem.


• The Hessian matrix and its inverse is not explicitly computed.


• Unnormalized observation perturbation matrix  instead of normalized .


• The square root of inverse of  is not used.

w

Y Z

R
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Assimilation of a single wind speed observation
Experimental settings

• Lorenc (2003), Bowler et al. (2013)


• The prior ensemble: 1000 members around  with 
a standard deviation of 


• Observation: a single wind speed  with a 10% 
Gaussian error


• Observation operator: 


• Ensemble gradient and Hessian with EN, CG (fixed ) and 
CGZ (updated ).


• Jacobian  with ENJ and CGJ. 

(2, 4) m s−1

(2, 2) m s−1

3 m s−1

|u | = u2 + v2

Z
Z

H = u/ |u |
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Assimilation of a single wind speed observation
Prior and posterior ensembles

Convergence in 26 steps.

Stagnation at the first iteration

due to a line search failure.

Converges in 5 steps.

Prior EN

CGCGZ
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Assimilation of a single wind speed observation
Optimization history

CG: α0 = 1.027

Swaying EN

Fast convergence 
with H = u/ |u |

No significant decrease of 
 for EN after step 7.J J

|∇J |

ℓ2

7

1

2

3
4

7

1 3

83
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Cycled experiments
with a Kortweg–de Vries–Burgers (KdVB) model

• The KdVB equation 


• A cyclic domain discretized with  points.


• The true and control runs are integrated from 
different initial time  of two-soliton solutions with 
different Bäcklund parameters .


• Initial ensemble perturbations are generated from 
an ensemble forecast with perturbed  and .


• Quadratic observations  are generated 
by perturbing the true run.

∂u
∂t

+ 6u
∂u
∂x

+
∂3u
∂x3

= ν
∂u2

∂x2

n = 101

t0
β1,2

β1,2 t0

H(u) = u2
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Cycled experiments with a KdVB model
Initial four cycles
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Cycled experiments with a KdVB model
Analysis quality

Analysis error and spread

cost

gradient error norm

analysis error

Iterations at the first cycle

free

EN CGZ

CG

EN1

observation error ENCGZCG
17101
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Cycled experiments with a KdVB model
Repeated experiments
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EN always converges 
except for the first cycle. EN iterates as needed.
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Cycled experiments with a KdVB model
Repeated experiments

EN vs CGZ vs CG (78/100) EN vs EN1 (44/100)
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by optimization

max

min

median
mean
3/4

1/4

EN and CGZ 
are significantly  
better than CG.
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Summary
Submitted to Tellus A

• The exact Newton (EN) and conjugate gradient method (CG) methods are 
compared under the framework of the maximum likelihood ensemble filter 
(MLEF, Zupanski 2005).


• The Hessian preconditioning works perfectly for the Booth function but 
not for Rosenbrock function, which can be minimized in five steps with EN.


• In a single wind speed assimilation (Lorenc 2003, Bowler et al. 2013), 
CG with updated  stagnates due to a line search failure.


• EN and CG with updated  yield significantly better analysis with a KdVB 
model and found to be more stable.

Z

Z

https://github.com/tenomoto/kdvb
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