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𝜆! 𝑯𝑩𝑯𝑻  : Background error variance spectrum projected onto the observation space

To evaluate the impact of a specification of 𝑹, we need to compare the associated observation error variance spectrum to the 
background error variance spectrum. The background error is correlated, and thus has a larger variance at large spatial scales 
than at small spatial scales.

𝜌! = 60 𝑘𝑚; 𝑀! = 8; 𝜎! = 1 

𝜆! 𝑹  : True observation error variance spectrum
𝜌" = 120 𝑘𝑚 ; 𝑀" = 10; 𝜎# = 1 

If a fully accurate 𝑹 is specified, the theoretical minimum error (              ) is reached, but only after a prohibitive number of 
iterations. This poor convergence is associated with a large condition number. The condition number of the system (𝜅) 
increases if at any spatial scale, the observation error variance is smaller than the background error variance (projected onto 
the observation space) 2 :

This occurs in this case at the smallest spatial scales here since 𝑀# > 𝑀$. 

𝜅 = 1 +max
!

𝜆! 𝑯𝑩𝑯𝑻

𝜆!(𝑹)

𝜆! 𝑅!%&'()*+  : Observation error variance spectrum with variance inflation 𝜌" = 0 𝑘𝑚 ; 𝑀" = 0; 𝜎# = 17 

Variance inflation reduces the overfit of the observations at large spatial scales at the expense of  small spatial scales where 
the underfit is exacerbated.  Prioritizing large spatial scales leads to an improvement of the analysis since the background and 
observation error variances are larger there than at small spatial scales. 

𝜆! 𝑅+!(,  : Observation error variance spectrum with neglected correlations 𝜌" = 0 𝑘𝑚 ; 𝑀" = 0; 𝜎# = 1 

If observation error correlations are neglected, the convergence is accelerated as the problematic behaviour at small spatial
scales is avoided. However, the observation error variance is underestimated at large spatial scales and overestimated at 
small spatial scales, leading to a sub-optimal solution at full convergence

Even if the ‘true’ observation error parameters lead to a slow convergence, a non-diagonal 𝑹 can still be used with 
‘reconditioned’ parameters. In particular, enforcing 𝑀#< 𝑀$ is advantageous even when it does not reflect the actual observation 
error statistics. It increases the specified observation error variance at the smallest spatial scales only, which accelerates the 
convergence without degrading significantly the analysis at full convergence, as large spatial scales are not affected.

𝜆! 𝑅-*.#%+  : Reconditioned observation error variance spectrum 𝜌" = 120 𝑘𝑚 ; 𝑀" = 2; 𝜎# = 1 

By comparing the background and observation error variance spectrums associated with 𝑩 and 𝑹, we can predict both the convergence rate of the minimization and the 
accuracy at full convergence, allowing us to find parameters for 𝑩 and 𝑹 leading both to a fast convergence and towards an accurate analysis. This is illustrated in the 
experiment below, where background states and observations are simulated with known error statistics defined by 𝑩 and 𝑹 and with respect to a known true state.  The 
assimilation is then realized with different specifications of 𝑹, and the total analysis error variance is computed at each iteration of the B-preconditioned conjugate gradient.

Diffusion operators used for 𝑩 typically use a large value of 𝑀!, while observation error diagnostics for certain observation types
suggest small values of 𝑀". In these cases where 𝑀"<𝑀! , accounting for observation error correlations is likely to improve the
convergence rate of the minimization. However, if future error diagnostics were to suggest larger values of𝑀", the relation𝑀"<𝑀!
should still be enforced to preserve the minimization rate without inducing a significant degradation of the analysis at full convergence.

In variational ocean data assimilation, diffusion operators are commonly used to model background error 
correlations. They are also suitable candidates to model observation error correlations as:
• their inverse can be accessed easily to apply 𝑹/0;
• they can be implemented with a finite-elements method to be applied to unstructured data [1];
• they allow spatially-varying and anisotropic correlations;
• their parameters provide some control on the convergence rate of the B-preconditioned conjugate gradient [2].

With spatially constant error covariance, grid 
and observation density, an error covariance 
matrix is circulant and diagonalized by a 
Fourier transform F. Its eigenvalue spectrum 
can be interpreted as the distribution of the 
error variance between all spatial scales. 

𝑹 = 𝔼[𝜺𝒐𝜺𝒐"]
𝑭𝑹𝑭" = 𝔼[(𝑭𝜺𝒐)(𝑭𝜺𝒐)"]

Observation error

Diagonal Fourier transform of the 
observation error

The main parameters of diffusion operators are a length scale 𝜌 and a smoothness parameter 𝑀.
The cut-off of the error variance spectrum depends on 𝜌 while the slope after the cut-off depends on 𝑀.


