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Low Order Models (LOMSs) allow to systematically explore many relevant issues connected with Numerical Weather and Ocean Prediction, thanks to their low computational and memory requirements. In
this context, we investigated breeding-driven adaptive Data Assimilation (DA) strategies with different DA approaches, exploiting an open-source suite in Python. Two LOMs have been considered: Lorenz
'63 (L63) and Lorenz-Emanuel '96 (LE96). In a first phase, mainly on L63, an “operational NWP-like” framework has been implemented, and different assimilation-prediction cycles have been tested.
Adaptive DA strategies have been investigated mainly with the spatially distributed LE96. Best performances resulted for the Ensemble Kalman Filter approach, by adding the constraint of not assimilating
over the same site in the following time-steps. This suggests the opportunity of including, in further studies, a space-time correlation analysis to improve the adaptive assimilation-sites selection strategy.
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CONCLUSIONS

Study Phase 1: an “operational NWP-like” framework has been implemented and tested with the L63 LOM, investigating different assimilation-forecast time intervals. First tests of breeding-driven adaptive DA strategies
have been performed on L63, searching for optimized DA times. Study Phase 2: different breeding-driven DA strategies have been investigated with the “Land-Ocean” LE96 LOM, searching for optimal DA sites. Tests
have been performed with various DA techniques from the PyDA Python suite [11]: i) 3D-VAR, ii) Extended Kalman Filter (EKF), i) Ensemble Kalman Filter (EnKF). Main Results: with all the DA techniques, the best
breeding-driven adaptive strategy resulted to be the one augmented by the constraint of not assimilating over the same site in the following time-steps (No-Repetition strategy). The DA technique that displayed the
greatest improvements has been the EnKF. This is a relevant result given that EnKF is widely used in the real meteorological and oceanographic operational context. The better performance of the No-Repetition strategy
suggests to investigate the opportunity of including, in further studies, a space-time correlation analysis to improve the adaptive assimilation-sites selection strategy.
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