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“Empty Hand” Data Assimilation



Fundamental Issues

1. (Error) in model and observations

2. (High Dimensionality) system dimension� # of observations

3. (Incompleteness) initial data only known partially

4. (Nonlinear) problem is nonlinear (even when model is linear!)



Isolating Difficulties
(Highly) idealized scenario

1. (Error) Model and Observations Deterministic Problem!

2. (High Dimensionality) Model given by PDE

3. (Incompleteness) Only finite-rank projection of solution known

4. (Nonlinear) Parameters appear affinely in the system



Defining the Problem
Reality.

∂tu = F (u; ~α), u = u(t , x). (Model)

where

~α = (α1, . . . , αp) ∼ unknown system parameters

Observations.

O = {Hδu(t)}t≥0, (Obs)

where

δ ∼ spatial resolution, Hδ ∼ finite-rank projection

Examples of Hδ

1. Projection onto Fourier modes up to wavenumbers ≤ δ−1

2. Local spatial averages distributed domain of mesh size ∼ δ
3. Nodal values distributed across domain spaced ∼ δ apart



Defining the Problem

∂tu = F (u; ~α) (Model)

O = {Hδu(t)}t≥0, (Obs)

Problem.

Given knowledge of (Model) and (Obs), define a mapping

A : O 7! ~α

Note that both (I − Hδ)u︸ ︷︷ ︸
unobserved state

and ~α are unknown!



State Estimation



State Estimation via Dynamic Relaxation (Nudging)
Assume parameters are known...

Reality.

∂tu + Au = F (u)

Nudging equation.

∂tv + Av = F (v)− µ(Hδv − Hδu)︸ ︷︷ ︸
nudging

,

where

µ ∼ nudging parameter



Azouani-Olson-Titi
2D Navier-Stokes Equations

∂t u + ν(−∆)u︸ ︷︷ ︸
Au

= −u·∇u −∇p + f︸ ︷︷ ︸
F (u)

, ∇· u = 0,
(NSE)

where ν > 0 kinematic viscosity, p scalar pressure field, f external force

Nudged NSE

∂t v − ν∆v = −v ·∇v −∇q + f − µ(Hδv − Hδu), ∇· v = 0 (NSEµ)

Theorem (Azouani-Olson-Titi, 2013)
There exists µ0 = µ0(ν, f ) such that if

µ > µ0 and µδ2 < ν

Then

RMS = ‖v(t)− u(t)‖L2 ≤ O(e−µt )︸ ︷︷ ︸
asymptotic synchronization



Computational results with 2D Navier-Stokes
Gesho-Olson-Titi, 2016 (5122, f = P110≤|k|≤132f , ν = 10−4,G = 2.5× 106)
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Figure 3: The error ‖u(t)−v(t)‖V versus t for h=0.6981.

where v is initialized as v0 = 0. Note that only the observations Ih(u) of the reference
solution u enter into the equations for computing for v. Also note that ‖u(0)−v(0)‖V =
‖u0‖V ≈ 1.946. Our goal now is to choose the resolution parameter h and the relaxation
(nudging) parameter µ in such a way that ‖u(t)−v(t)‖V →0, numerically, as t→∞.

As discussed in [1], if µ is too small, the feedback control (nudging term) will be too
weak to ensure the approximating solution converges to the reference solution. If µ is too
large, then spill over into the fine scales becomes significant and again prevents recovery
of the reference solution. Fig. 3 illustrates each of these possibilities for h = L/K, where
K =9, using different values of µ.

When µ =1/2 the relaxation (nudging) parameter is too large for the approximating
solution to converge to the reference solution, and when µ=1/5 it is too small. However,
the intermediate value µ=1/3 works with the error represented by ‖u(t)−v(t)‖V falling
below 10−10 by t=13417.8. Note that, since the double-precision floating-point numbers
used to represent the Fourier modes of u and v on the computer have only 15 digits of
precision, we cannot expect convergence of ‖u(t)−v(t)‖V to exact zero over time.

For µ=1/4 the error falls below 10−10 at T =12327.1, however, it rises again and it is
not clear whether after T = 23463.9 the error finally stays below 10−10 or not. The value
µ = 2/9 shows an even more irregular pattern where ‖u(t)−v(t)‖V exhibits a period of
decay followed by a period of growth that covers six orders of magnitude. Fortunately,
most of our parameter choices avoid these borderline cases and the corresponding error
either converges towards zero and stays below 10−10 or shows few signs of converging
and stays well above 10−10.



Proof of Azouani-Olson-Titi Theorem

Form the difference between (Model)

∂tu + Au = F (u),

and (Model)µ

∂tv + Av = F (v)− µ(Hδv − Hδu)

Call w = v − u. Then

∂tw + Aw + µw = F (v)− F (u) + µ(I − Hδ)w



Proof of Azouani-Olson-Titi Theorem

Morally

∂tw + Aw︸︷︷︸
dissipation

+ µw︸︷︷︸
damping

∼ (DF (u))w︸ ︷︷ ︸
nonlinear source

+ µ(I − Hδ)w︸ ︷︷ ︸
interpolation error

Want to balance

dissipation ∼ interpolation error & damping ∼ nonlinear source

Choose

µ & maximal Lyapunov exponent

µδ2 . dissipative length scale

Then

∂tw + µw ≈ 0

“Done!”



Literature (of nudging-based DA (a lá Azouani, Olson, Titi) in the context of PDEs)

Computational Studies
2016, Gesho-Olson-Titi (2D NSE, nudging with general observables)
2016, Altaf-Titi-Knio-Zhao-McCabe-Hoteit (2D Bénard convection, low Rayleigh)
2017, Farhat-Jolly-Johnston-Titi (2D Bènard convection, large Rayleigh)
2017, Lunasin-Titi (stabilization, Kuramoto-Sivashinsky, Chafee-Infante)
2017, Larios-Pei (nonlinear CDA, 1D KSE)
2018, DiLeoni-Mazzino-Biferale (3D NSE, spectral nudging)
2018, Blocher-M-Olson (Lorenz equations, time-averaged obs.)
2018, Larios-Victor (Reaction-Diffusion, moving cluster observations)
2019, Celik-Olson-Titi (2D NSE, spectral filtering)
2019, Desamsetti-Dasari-Langodan-Titi-Knio-Hoteit (real atmospheric data)
2019, Hudson-Jolly (2D MHD equations)
2018, DiLeoni-Mazzino-Biferale (3D NSE, parameter estimation)
2020, Carlson-Hudson-Larios (2D NSE, parameter estimation)
2020, Buzzicotti-Bonaccorso-DiLeoni-Biferale (3D NSE, nudging vs. ML)
2021, Chen-Li-Lunasin (Shell models)
2021, McQuarrie-Pachev-Whitehead (1D KSE, parameter estimation)
2022, Agasthya-DiLeoni-Biferale (3D Rayleigh-Benard convection, temperature only)
2021, M-Ng (Lorenz, parameter estimation)
2021, Carlson-Hudson-Larios-M-Ng-Whitehead (Lorenz, parameter estimation)
2023, Farhat-Larios-M-Whitehead (2D NSE, forcing estimation)



Literature (of nudging-based DA (a lá Azouani, Olson, Titi) in the context of PDEs)

Analytical Studies (no errors)
2013, Azouani-Olson-Titi (2D NSE, nudging, general observables)
2015, Kalantarov-Titi (stabilization of nonlinear wave equations)
2016, Farhat-Lunasin-Titi (2D NSE, horizontal velocity only)
2016, Farhat-Lunasin-Titi (3D RB convection in porous media, temp. only)
2016, Farhat-Lunasin-Titi (3D Planetary QG)
2016, Jolly-Sadigov-Titi (1D damped-driven NLS equation, spectral obs.)
2017, Farhat-Lunasin-Titi (2D RB convection, horizontal velocity only)
2017, Biswas-M (2D NSE, analytic convergence, spectral obs.)
2017, Biswas-Hudson-Larios-Pei (2D MHD, velocity only)
2017, Jolly-Sadigov-Titi (1D damped-driven KdV equation, spectral obs.)
2017, Jolly-M-Titi (2D SQG, surface observations)
2018, Larios-Rebholz-Zerfas (2D NSE, stability and accuracy of DA schemes)
2018, Kalantarov-Titi (stabilization of Navier-Stokes-Voight)
2020, Gardner-Larios-Rebholz-Vargun-Zerfas (CDA for Vel-Vort. form)
2020, Carlson-Larios (2D NSE, sensitivity analysis and CDA)
2020, Du-Shiue (Lorenz, nonlinear CDA)
2020, Biswas-Price (3D NSE)
2020, Balakrishna-Biswas (3D Boussinesq)
2021, Franz-Larios-Victor (2D NSE, dynamic observers)
2021, Chow-Leung-Pakzad (two-phase flow)
2021, Cao-Giorgini-Jolly-Pakzad (3D LES NSE)
2021, Biswas-Brown-M (2D NSE, higher-order convergence, mesh-free obs.)
2021, Carlson-Hudson-Larios-M-Ng-Whitehead (Lorenz, parameter estimation)
2022, M (2D NSE, parameter estimation)



Literature (of nudging-based DA (a lá Azouani, Olson, Titi) in the context of PDEs)

Analytical Studies (with errors)
2008, Apte-Jones-Stuart-Voss (2D linearized shallow water equations)
2013, Blömker-Law-Stuart-Zygalakis (2D NSE, noisy spectral obs., 3DVAR)
2014, Bessaih-Olson-Titi (2D NSE, noisy general obs.)
2014, Law-Shukla-Stuart (Lorenz equations, 3DVAR)
2016, Albanez-Lopes-Titi (3D NSE-α model)
2016, Foias-Mondaini-Titi (2D NSE, discrete-in-time obs.)
2016, Markowich-Titi-Trabelsi (3D Brinkman-Forchheimer-extended Darcy model)
2018, Albanez-Benvenutti (3D Bardina model)
2018, Blocher-M-Olson (Lorenz equations, time-averaged obs.)
2018, Jolly-M-Olson-Titi (2D SQG, time-averaged obs.)
2018, Larios-Pei (2D NSE via 2D NS-Voight)
2018, GarcíaArchilla-Novo-Titi (uniform-in-time error est. for finite elements)
2018, Mondaini-Titi (uniform-in-time error est. for post-proc. Galerkin)
2019, Ibdah-Mondaini-Titi (uniform-in-time error est. for fully discrete)
2019, Pei (3D Primitive Equations of the ocean)
2020, Farhat-GlattHoltz-M-McQuarrie-Whitehead (3D RB conv., large Pr, temp. only)
2020, Biswas-Bradshaw-Jolly (2D NSE, local-in-space, observations)
2021, Jolly-Pakzad (2D NSE, FEM interpolants)
2022, Biswas-Bradshaw-Jolly (2D NSE, moving observations)



Literature
And many, many others!

Studies on nudging or synchronization-based algorithms from
greater DA community
1976, Hoke-Anthes (Nudging for DA introduced in context of ODEs)
2006, Duane-Tribbia-Weiss (DA via synchronization perspective: Lorenz, 2-layer QG)
2008, Auroux-Blum (BFN numerical implementation for Lorenz and 2-layer QG)
2011, Auroux-Blum-Nodet (Diffusive BFN: stabilizing diffusion in “back” step)
2013, Auroux-Bansart-Blum (BFN application to Burgers PDE)
2014, Rey, Eldridge, Kostuk, Abarbanel, Schumann-Bischoff, Parlitz (State &
Parameter Estimation via delay synchronization: Lorenz 96)
2015, Pazó-Carrassi-López (Delay-coordinate nudging, relation to Takens: Lorenz 96)
2018, Carrassi-Bocquet-Bertino-Evensen (Overview of DA methods including nudging)
2018, Pinheiro-van Leeuwen, Partliz (Ensemble framework of delay synchronization)
2018, Pinheiro-van Leeuwen, Geppert (Particle filter via synch. framework for DA)
2021, Conti-Aydogdu-Gualdi-Navarra-Tribbia (“physical derivation" of nudging)

*Many thanks to Alberto Carrassi and Peter Jan van Leeuwen for the additional references

Nota bene. The above references encompass rigorous theoretical and numerical results in the finite-dimensional

setting of ODEs, or numerical tests in PDE settings, but do not cover rigorous theoretical results in

infinite-dimensional PDE settings. This talk discusses rigorous theoretical results in the PDE setting.



Parameter (& State) Estimation



Carlson-Hudson-Larios
Sensitivity Analysis of ν in 2D NSE

∂tu + ν1(−∆)u = −u·∇u −∇p + f , ∇· u = 0,

∂tv + ν2(−∆)v = −v ·∇v −∇q + f − µ(Hδv − Hδu), ∇· v = 0.
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Fig. 3. Shown on the left is µ|Ih(v) � Ih(u)|2 versus time for several di↵erent values of ⌫2.
We see that in each case, |Ih(v) � Ih(u)| reaches a minimum value, which is smaller for ⌫2 closer
to ⌫1. On the right is the value of the right-hand side of (5.2) for the same values of ⌫2. We see
that the values on the right are negligible compared to the error values on the left.

only the sparse observational data collected from the flow, Ih(u), and the solution of
the data assimilation algorithm, v. We then test the algorithm computationally,
demonstrating a full recovery of true behavior of the flow. An analytical proof of the
convergence of this algorithm will be the subject of a future work.

We can see in Figure 2 that the error in the viscosity value is directly correlated
with the minimum error achieved by the corresponding data assimilation solution.
This observation motivates the following: given the data Ih(u), we can compute v
and use the minimum error we observe to estimate the true viscosity, ⌫1.

Although Ih(u) is su�cient to compute v, we would need to have u to compute
|u � v|. Fortunately, we see that |⌫2 � ⌫1| and |Ih(u) � Ih(v)| are also correlated, as
can be seen in Figure 3.

With this in mind, we will now study this correlation, so that, once its nature is
established, we can use it to develop an algorithm to estimate ⌫1.

5.1. A posteriori error estimate. The result in Theorem 3.1, in addition to
being in terms of the true error (as opposed to the error of only the interpolations of
u and v), establishes bounds for the data assimilation error in terms of the Grashof
number. We are now considering a situation where we have access to v, and so would
like to obtain a sharper estimate on the error by allowing it to be in terms of v instead
of G.

Let w = u � v. Subtracting (2.13a) from (2.11a), we obtain

wt + B(w,v) + B(u,w) = (⌫2 � ⌫1)Av � ⌫1Aw � µP�(Ih(w)).

Now, we apply Ih to both sides of this equation and obtain

@tIh(w) + Ih(B(w,v) + B(u,w))

= (⌫2 � ⌫1)Ih(Av) � ⌫1Ih(Aw) � µIh(P�(Ih(w))).

Next, we take the inner product with Ih(w) and use the fact that

�µ hIh(P�(Ih(w))), Ih(w)i = �µ|Ih(w)|2.
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Carlson-Hudson-Larios
Studied Sensitivity of Nudging to ν in 2D NSE

∂tu + ν1(−∆)u = −u·∇u −∇p + f , ∇· u = 0,

∂tv + ν2(−∆)v = −v ·∇v −∇q + f − µ(Hδv − Hδu), ∇· v = 0.

Energy balance for Hδw = Hδv − Hδu.

1
2

d
dt
‖Hδw‖2

L2 +(ν1 − ν2)〈Hδ(−∆)v ,Hδw〉+ µ‖Hδw‖2
L2

= −〈Hδ(ν1(−∆)w + u· ∇v + u· ∇w),Hδw〉.

Hence

ν1 ≈ ν2 +
µ‖Hδw‖2

L2

〈Hδ∆v ,Hδw〉
Algorithm. When ν is unknown, consider update scheme given by

νn+1 = νn +
µ‖Hδw‖2

L2

〈Hδ∆v ,Hδw〉

∣∣∣∣∣
t=tn+1



Carlson-Hudson-Larios
Numerical experiments demonstrate convergence
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Fig. 4. The evolution of the L2 error is shown for the solutions of the data assimilation systems
corresponding to Algorithms 5.1 and 5.2, as well as that of the relative error in the approximate
viscosity. The ⌫k are chosen and the equations updated following the procedures outlined in the
algorithms.

Algorithm 5.2

input Ih(u) on [t0, T ] . available reference solution data
input ⌫2 . an initial estimate for ⌫1

input dt > 0 . time step
input I > 0 . time to wait before computing time averages
input J > 0 . length of time interval used to compute time averages
input ✏ > 0 . tolerance for machine precision
v0  0
t t0
while |Ih(u(t))� Ih(v(t))| > ✏ , AND t0 + I + J < T do

compute v(t) on [t0, t0 + I +J] using viscosity ⌫2, feedback Ih(u(t)), IC v(t0) = v0, and time step
dt.

compute ⌫̃1 using (5.4) over the time interval [t0 + I, t0 + I + J].
v0  v(t0 + I + J)
t0  t0 + I + J
⌫2  ⌫̃1

end while
return ⌫2

6. Conclusion. In this article, we presented and analyzed a new way to recover
unknown parameters of a system (in this case, the viscosity), using a CDA approach
for the 2D incompressible Navier–Stokes equations. This means that even in the
case where the viscosity is unknown and one only has sparse observational data,
one may still obtain convergence to the true solution by using the AOT algorithm in
combination with the algorithms proposed here. In addition, our new algorithms allow
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Proof?



Lorenz equations
Lorenz equations.

dx
dt

= −σx + σy , x(0) = x0

dy
dt

= −y − σx − xz,

dz
dt

= −βz + xy − β(ρ+ σ)

(Lor )

Suppose O = {x(t)}t≥0 is known.

Nudging equation.

dx̃
dt

= −σ̃x̃ + σ̃ỹ − µ(x̃ − x), x̃(0) = x̃0

dỹ
dt

= −ỹ − σ̃x̃ − x̃ z̃, ỹ(0) = ỹ0

dz̃
dt

= −βz̃ + x̃ ỹ − β(ρ+ σ̃), z̃(0) = z̃0

(L̃or )

Note. (Lor ) is a toy model for Rayleigh-Bénard Convection.



Parameter update via nudging
Following (Carlson-Hudson-Larios, 2020)

Lorenz equations.

Let u = x̃ − x . Observe

du
dt

= −σ̃(x̃ − ỹ)− µ(x̃ − x) + σ(x − y).

Suppose du/dt ≈ 0. Then

σ ≈ σ̃ − µu
ỹ − x̃



M-Ng, 2021
Numerical Results



Convergence in Lorenz

Theorem (Carlson-Hudson-Larios-M-Ng-Whitehead,
2021)
Suppose that there exists ε > 0 such that

inf
k=1,...,n+1

|ỹ(tk )− x̃(tk )| ≥ ε.

Then for µ appropriately tuned, depending on ε, one has

|σk+1 − σ| ≤
1
2
|σk − σ|,

for all k = 1, . . . ,n.



Convergence in 2D NSE

Theorem (M, 2021)
Suppose there exists ε > 0 such that

inf
k=1,...,n+1

|〈Hδ∆v ,Hδw〉|
∣∣∣
t=tn+1

≥ ε.

Then for µ appropriately tuned, depending on ε, one has

|νk+1 − ν| ≤
1
2
|νk − ν|,

for all k = 1, . . . ,n.



Unknown Sources
Can one reconstruct unknown external sources?

2D NSE.

∂t u + ν(−∆)u = −(u·∇)u −∇p + f , ∇· u = 0. (NSE)

Now f is unknown.

Issues at play.
Consider heat equation

∂t u + ν(−∆u) = f . (Heat)

If f = Hδ f . Then O determines f trivially:

∂t Hδu + ν(−∆)Hδu = Hδ f

However in (NSE)

∂t Hδu + ν(−∆)Hδu + P(Hδu·∇)Hδu = Hδ f − P (Hδ(u·∇)u − (Hδu·∇)Hδu)︸ ︷︷ ︸
Reynolds stress!

Note. P is projection onto divergence-free vector field



Unknown Sources
Can one reconstruct unknown external sources?

2D NSE.

∂t u + ν(−∆)u = −(u·∇)u −∇p + f , ∇· u = 0. (NSE)

Now f is unknown.

Nudging equation.

∂t v − ν∆v = −(v ·∇)v −∇q + g − µ(Hδv − Hδu), ∇· v = 0, (NSEµ,g )

where g is some guess for f .

Observe that (NSEµ,g ) provides a reconstruction of small scales. Then

u ≈ Hδu︸︷︷︸
observed

+ (I − Hδ)v︸ ︷︷ ︸
reconstructed



Algorithm for Reconstructing f

Nonlinear filtering.

Let
ũ = Hδu + (I − Hδ)v

Recall v = v(O, g). Then define

g̃ := ∂t ũ + ν(−∆)ũ + P(ũ·∇)ũ.

After a transient period (allowing (NSEµ,g )) to relax, solve for v :

∂t v − ν∆v = −(v ·∇)v −∇q + g̃ − µ(Hδv − Hδu), ∇· v = 0. (NSEµ,g̃ )

Observe that v = v(O, g̃).

Rinse and Repeat.



Convergence in 2D NSE

Theorem (M, 2022)
Suppose f = Hδf . Consider any f0 such that f0 = Hδf0 over
[t0,∞), t0 = 0.

There exists δ = δ(ν, f ) so that for µ appropriately tuned the
sequence f1|t≥t1 , f2|t≥t2 , . . . generated as above satisfies

sup
t≥tk+1

‖fk+1(t)− f (t)‖L2 ≤ 1
2

sup
t≥tk
‖fk (t)− f (t)‖L2

for all k ≥ 0.



Farhat-Larios-M-Whitehead, 2022
20482, f = P16≤|k|≤64f , ν = 10−4, G = 2.5× 106

8

FIG. 2. (log-linear plot) L2 errors vs. time. “DR” refers to the direct replacement algorithm, while “EX” refers to the exact
Laplacian algorithm. “-c” indicates that the force was updated continuously (i.e., at each time step), while ”-d” indicates
discrete force updates, every 0.25 time units.

justified, is simple to implement, and does not require an ensemble of simulations to generate the desired forcing
function. We emphasize that the rigorous result provided here is restricted to two dimensions only due to the current
lack of a global-in-time bound on solutions for the gradient of the velocity field for the three dimensional Navier-Stokes
equations. Under suitable assumptions on the regularity of solutions to the 3D equations, we are confident that the
same algorithm presented here will recover the forcing in that setting. Hence, we do not anticipate that the recovery
of the forcing critically relies on the inverse cascade in 2D turbulence which tends to aggregate large scale structures
[55]. Further investigations (both numerical and analytical) are required to confirm these hypotheses however.



Lessons

Equation possesses its own mechanism for filtering
errors!

Mechanism for recovering unobserved state is nonlinear

Works in conjunction with observations

Same mechanism enables parameter recovery



Current & Future Directions
Theoretical results in the PDE setting

State Estimation.

I justification of µ!∞ limit? with E. Carlson (Caltech), A. Farhat (Florida State

University), C. Victor (Texas A&M)

I effects of rotation and stratification? with A. Farhat (FSU) and A. Kumar (FSU)

Parameter Estimation.

I recovering several parameters? with J. Murri (UCLA) and J. Whitehead (Brigham

Young Unviersity)

I recovering anisotropic viscosities? with Q. Lin (Clemson University)

I force reconstruction beyond obs. scale with J. Broecker (University of Reading),

G. Carigi (University of L’Aquila), and T. Kuna (University of L’Aquila)

Future.

I non-spectral observations?

I state-dependent parameters?

I observational errors?
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Proof
Viscosity reconstruction.
Model error

νk+1 − ν

=

d
dt

1
2‖Hδw‖2

L2 − ν‖Hδ∇w‖L2 + 〈P(w ·∇)Hδw , (I − Hδ)w〉 − 〈PHδ(u·∇)w + (w ·∇),Hδw〉
〈Hδ∆v ,Hδw〉

Synchronization error

‖w(t)‖L2 + ‖∇w(t)‖L2 + ‖∆w(t)‖L2 ≤ O
( |νk − ν|

µ1/2

)

Forcing reconstruction.
Model error

fk+1 − f

= Hδ((I − Hδ)w ·∇)(I − Hδ)w + Hδ(u·∇)(I − Hδ)w + Hδ((I − Hδ)w ·∇)u

Synchronization error

‖w(t)‖L2 ≤ O
(‖fk − f‖L2

µ

)
, ‖∇w(t)‖L2 ≤ O

(‖fk − f‖L2

µ1/2

)
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