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Motivation
● Variational data assimilation (3D/4D-Var) in current numerical weather prediction 

(NWP) models is performed in a control space defined by analytical transformations 
utilising manually-defined physical balances

● Weakness: equatorial balances cannot be adequately represented using these 
analytical transformations

● Idea: Use neural-network-discovered transformations which describe these 
balances to perform variational cost function minimisation in a reduced-order latent 
space

● Recent approaches to neural-network data assimilation (e.g. Mack, 2020; Amendola, 
2021; Peyron, 2021) hardly applicable to current NWP, i.e., they require interpolation 
of (sparse) observations to the (dense) model grid, etc.
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Variational autoencoder (VAE)
● VAE architecture based on Brohan (2022)
● Input data: daily mean T850 from ERA5 reanalysis on latitude-longitude grid 

    (0.25˚ × 0.25˚ resolution → 720 × 1440 grid points)
● Data standardisation: 

… climatological mean for day-of-year
… climatological standard deviation for day-of-year

ENCODER DECODER
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● Sampling
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● Training:
– Reconstruction loss
– Regularisation loss

● Regularisation ensures Gaussian properties of the latent space vector required 
of variational DA, and its smoothness
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●

●

● Training:
– Reconstruction loss
– Regularisation loss

● Regularisation ensures Gaussian properties of the latent space vector required 
of variational DA, and its smoothness

● Training set 1979-2014, validation set 2015-2018, test set 2019-2022

LATENT VECTOR

ENCODER DECODER

5 / 26



Representation of temperature fields with VAE

a) b) c)
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3D-Var cost function

● Assumptions: 
– background and observations are independent
– their errors are Gaussian

● Cost function:

x … state vector in the grid point space
xb ... background vector
B … background-error covariance matrix
y ... observation vector
H … observation operator
R … observation-error covariance matrix
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● Cost function:

● Cost function in latent space:

z … latent vector
zb ... background defined in latent space
Bz … background-error covariance matrix
y ... observations vector
H … observation operator
D … decoder
R … observation-error covariance matrix
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● Cost function:

● Cost function in latent space:

y ... observations vector
H … observation operator
D … decoder
R … observation-error covariance matrix
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● Cost function:

● Cost function in latent space:

zb ... background defined in latent space
Bz … background-error covariance matrix
y ... observations vector
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● Single assimilation cycle
● Background simulated from ground truth for previous day (d-1)
● Observations simulated from ground truth for present day (d)
● Ensemble of data assimilations: 150 ensemble members for background (perturbed 

according to Bz) and observations (perturbed according to R)

Setup of observing system simulation experiments
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Background-error covariance matrix

● Bz quasi-diagonal => we only use the 
diagonal elements for its inverse

● Sampling perturbed background latent 
vectors:
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a) b)

c) d) e)

Flow-dependent background-error standard deviation
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a) b)

c) d) e)

Flow-dependent background-error standard deviation

Even though background-error standard 
deviation is constant in the latent space, it is 
flow-dependent in the grid point space



Single observation experiments 
in midlatitudes
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Example: observation above Ljubljana, 
  Slovenia (46.1˚N, 14.5˚E)

● Background for 2019-04-15

● Preset observation departure                                           
and standard deviation
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● Increment peaks at the observation location
● Increment stretched in SW-NE and elongated towards 

SW (typical SW winds)
● Positive increment surrounded by a shallower negative 

increment (spatial translation of synoptic Rossby waves 
typical for climatological B matrices (Fisher, 2003))

● Increments further away have negligible magnitude
● σa significantly reduced with respect to σb only in the area 

of the positive increment

a) b) c)

d)
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Single observation experiments 
in tropics
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Example: observation above Singapore (1.3˚N, 103.9˚E)

● Weak increment as 
● Same magnitude of increment in tropics and midlatitudes as σb in the midlatitudes is 

much greater than in the tropics (climatological B matrix (Fisher, 2003))
● Std reduction elongated towards E (typical E winds in the tropical lower 

troposphere)
● Increment pattern resembles response to diabatic heating over the Maritime 

continent (Gill, 1980; Hoskins and Karoly, 1981)
a) c)b)
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Example: observation above 
  E Equatorial Pacific (0˚N, 85˚W)

● ENSO pattern 

● σa/σb reduction elongated towards W (lower branch of Pacific Walker circulation)

a) b) c)
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● Theoretical analysis increment and standard deviation at observation location:

● Experimental results:

Quantitative evaluation 
for single observation experiments
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Multivariate case: (Z200, u200, v200)
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ZZ Zu Zv

c)

a) b) c)

d) e)

f) g) h)

● Ljubljana
● Observed 
●

●

● Top row:        
Correlation and 
cross-correlation 
functions derived 
using the 
geostrophic 
increment 
assumption (from 
Kalnay, 2003)
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● Ljubljana
● Observed 
●

●

uZ uu uva) b) c)

d) e) f)

g) h) i)
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Outlook and conclusions
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Outlook

● Multivariate case with other variables (humidity, mean sea level pressure, etc.)

● More than one pressure/hybrid level 

● 4D-Var

● Flow-dependent Bz using ensemble of forecast models simulations

● Potential pitfalls:
– Should we localise increments?
– Can we use the same approach for mesoscale/convective-scale balances?
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Conclusions

● We propose a neural-network-based method for variational data assimilation of 
atmospheric observations in a reduced-dimension latent space discovered by VAE

● We define a 3D-Var cost function in the latent space

● Bz  is shown to be quasi-diagonal
● Bz provides a unified representation of both tropical and extratropical 

covariances
● Bz is constant in the latent space but flow dependent in the grid point space
● The method can be further extended to multiple variables, multiple levels, and 4D-Var
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