

Mitigating the curse of small ensembles with **Probit-space Ensemble Size Expansion for Gaussian Copulas** (PESE-GC; "peace gee-see")

Man-Yau ("Joseph") Chan^{1,2}, Jeffrey L. Anderson¹ & Craig Schwartz¹

¹National Center for Atmospheric Research, USA

²The Ohio State University (starting Jan 2024), USA

Email: chan.1063@osu.edu

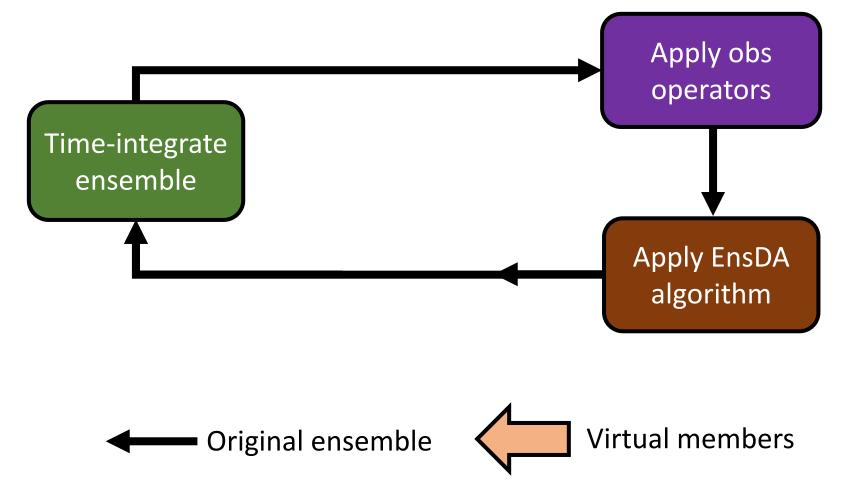
Motivation

Small ensemble sizes because models are expensive to run.

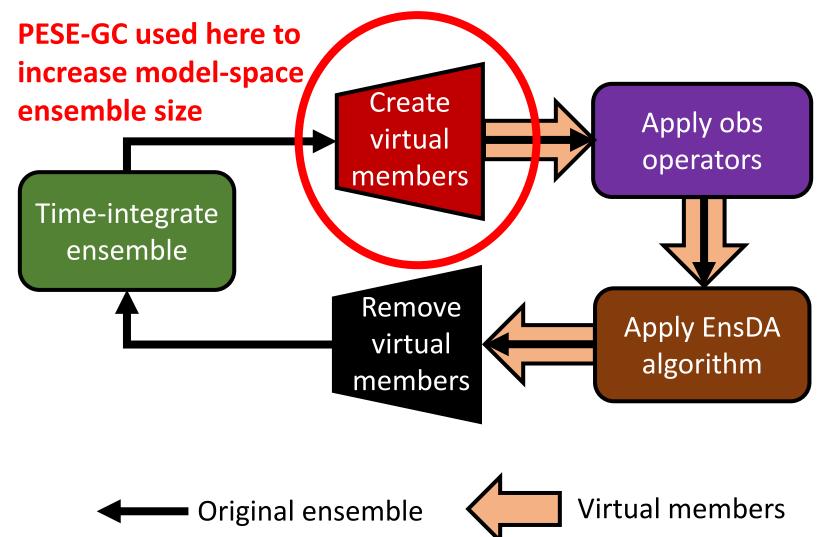
Thus, sampling errors contaminate ensemble statistics.

Therefore, limits EnsDA's impacts.

Goal: Improve EnsDA by increasing ensemble size without more model runs



Goal: Improve EnsDA by increasing ensemble size without more model runs



Question to ML folks in audience

What do you think of the usefulness of this method for ML in low-data situations?

Main Message

PESE-GC employs users' knowledge of 1D forecast PDFs* to create additional model-space ensemble members.

- * Aka, marginal forecast PDFs
- ** Tested using Lorenz 1996 model.

*Chan, Anderson, Chen (2020, Monthly Weather Review)

Starting point

Efficient and scalable Gaussian resampling algo*

Traditional SVD recipe for Gaussian resampling:

Making *L* via SVD requires $\sim (10^8)^3 = 10^{24}$ operations.

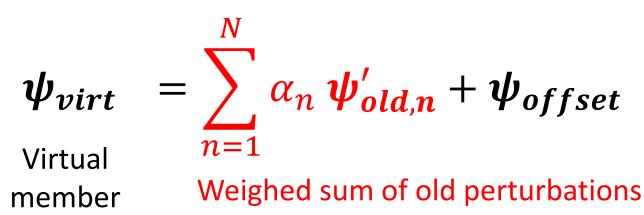
L must be computed online in DA executable.

Constructing *L* will likely cause parallelization bottlenecks.

Starting point

Efficient and scalable Gaussian resampling algo*

Fast weighted-sum recipe to make virtual members:



The weights (α_n) can be **determined offline in** $\sim 10^3$ **operations** and **model agnostic** (i.e., WRF & L96 use the same set of α_n).

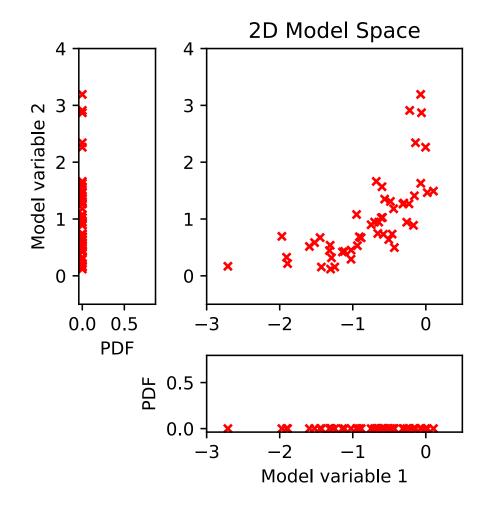
This weighed sum procedure is $\sim 10^{12}$ times more efficient than traditional method.

Main Message

PESE-GC employs users' knowledge of 1D forecast PDFs* to create additional model-space ensemble members.

- * Aka, marginal forecast PDFs
- ** Tested using Lorenz 1996 model.

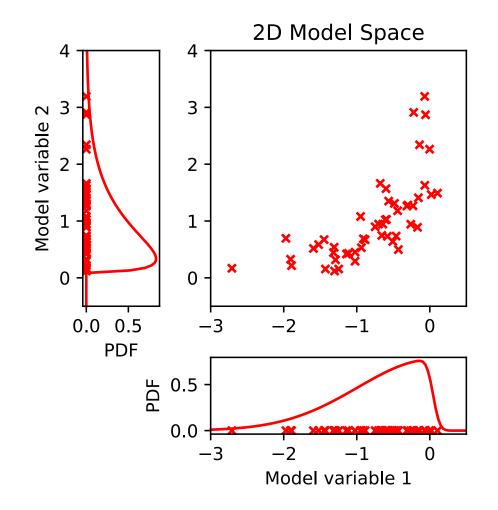
Employs users' knowledge of prior marginal PDFs & efficient resampling to generate virtual members.



Will demo PESE-GC with a bivariate model space example.

× Original members

Employs users' knowledge of prior marginal PDFs & efficient resampling to generate virtual members.

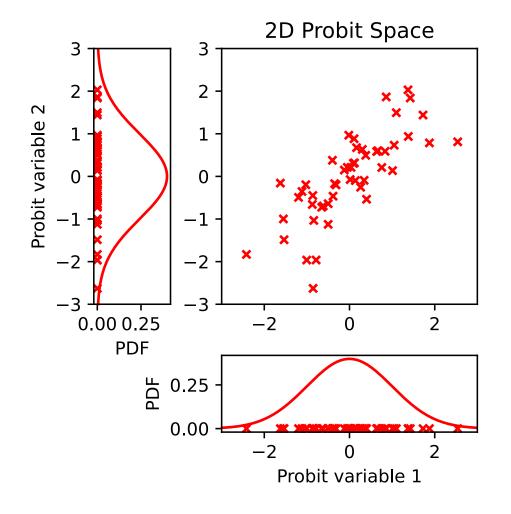


<u>Step 1:</u>

For each forecast variable, fit user-informed PDF to original ensemble members

- × Original members
- Fitted 1D PDF

Employs users' knowledge of prior marginal PDFs & efficient resampling to generate virtual members.



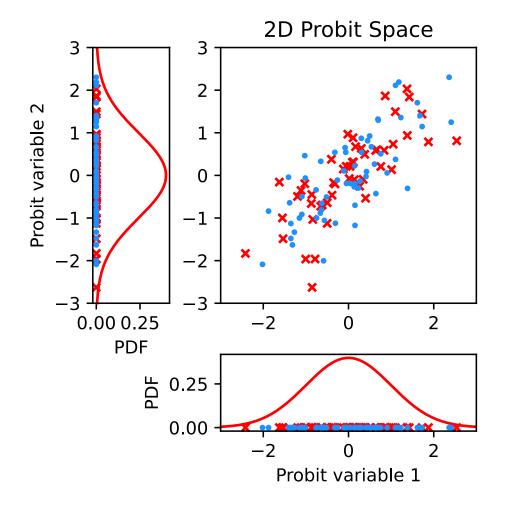
Step 2:

For each variable, transform fitted PDF and original members to standard normal.*

- × Original members
- Fitted 1D PDF

*A.k.a., probit probability integral transforms, a type of Gaussian anamorphosis¹²

Employs users' knowledge of prior marginal PDFs & efficient resampling to generate virtual members.



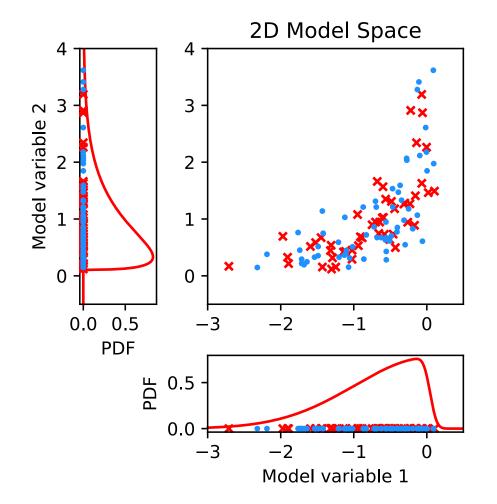
Step 3:

Apply efficient and *embarrassingly parallel* Gaussian resampling scheme* to create "virtual probits".

*Chan, Anderson, Chen (2020, Monthly Weather Review)

- × Original members
- Fitted 1D PDF
- Virtual members

Employs users' knowledge of prior marginal PDFs & efficient resampling to generate virtual members.



<u>Step 4:</u>

Reverse the transforms applied in step 2.

- × Original members
- Fitted 1D PDF
- Virtual members

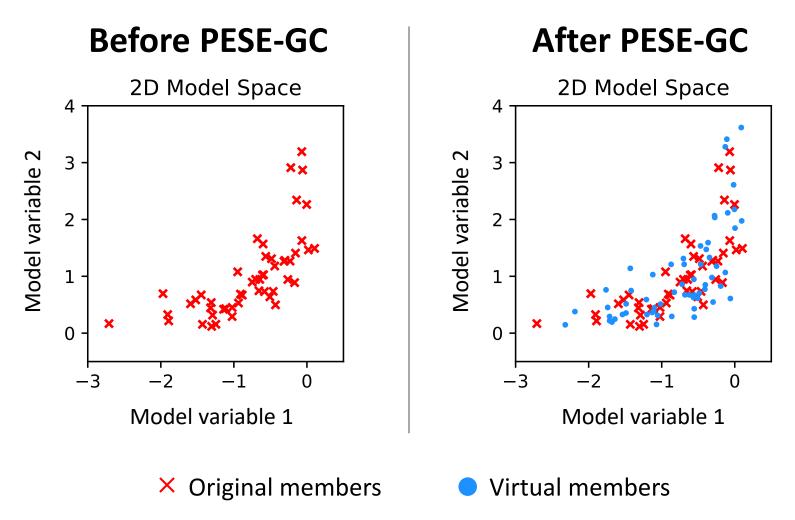
PESE-GC's 4 steps

For each forecast model variable:

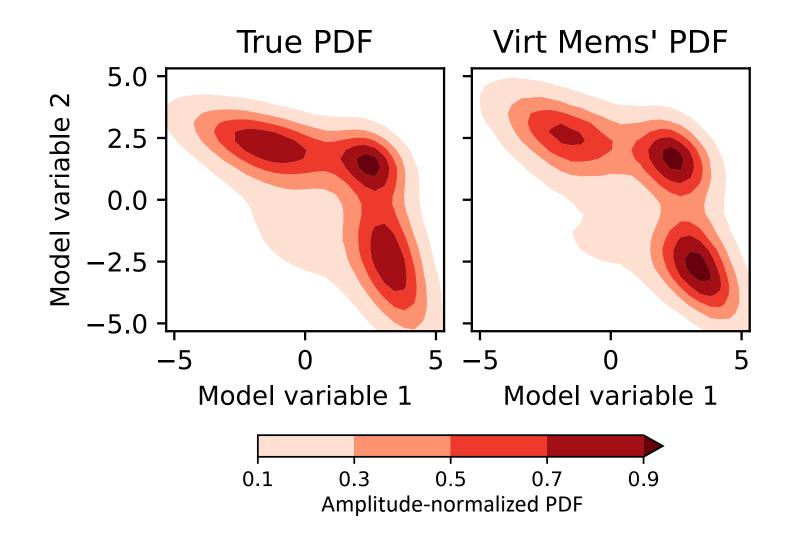
- 1. Fit user-informed marginal PDF to ensemble members.
- 2. Transform members into a Gaussian space ("Probit space").
- 3. Apply efficient and scalable Gaussian resampling.
- 4. Reverse transform applied in step 2.

Note: *These 4 steps are embarrassingly parallel!* The execution speed scales well (linearly) with number of computer cores!

PESE-GC can handle non-Gaussian forecast distributions



PESE-GC can handle non-Gaussian forecast distributions



Main Message

PESE-GC employs users' knowledge of 1D forecast PDFs* to create additional model-space ensemble members.

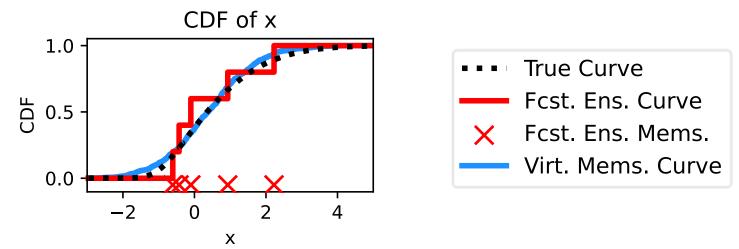
- * Aka, marginal forecast PDFs
- ** Tested using Lorenz 1996 model.

Main Message

PESE-GC employs users' knowledge of 1D forecast PDFs* to create additional model-space ensemble members.

- * Aka, marginal forecast PDFs
- ** Tested using Lorenz 1996 model.

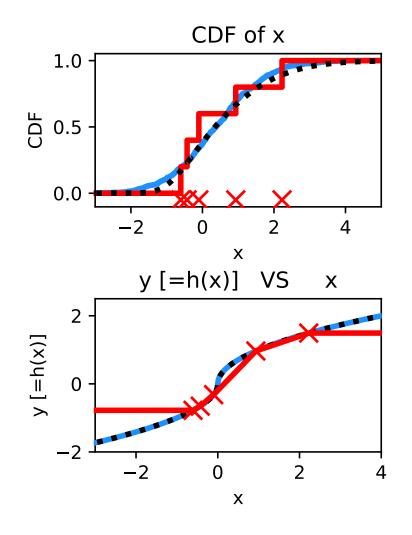
Bi-variate demonstration (1 model variable x, 1 obs variable y)



Setup of demo:

- True model-space forecast PDF is skewed normal
- 5 forecast members
- User knows forecast PDF is close to Gaussian, so used PESE-GC with <u>Gaussian marginals</u>.
- Obs operator: $h(x) = sign(x) \sqrt{|x|}$

1) Sampled relationship btwn obs & model quantities.

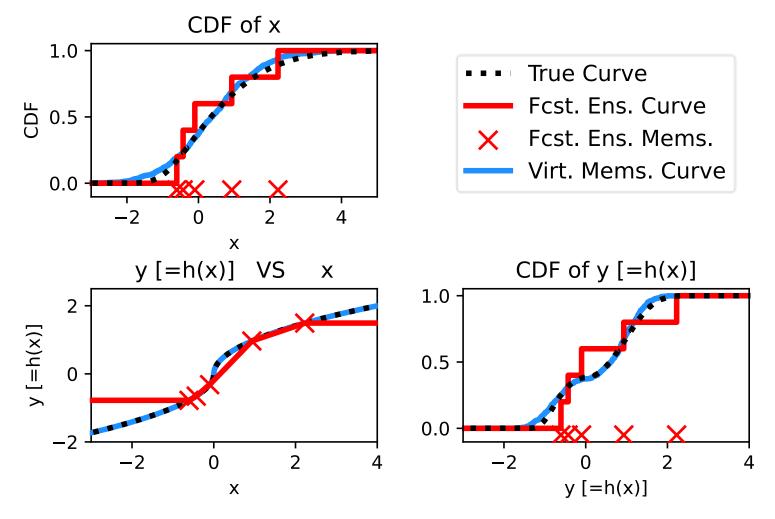


	True Curve
	Fcst. Ens. Curve
X	Fcst. Ens. Mems.
	Virt. Mems. Curve

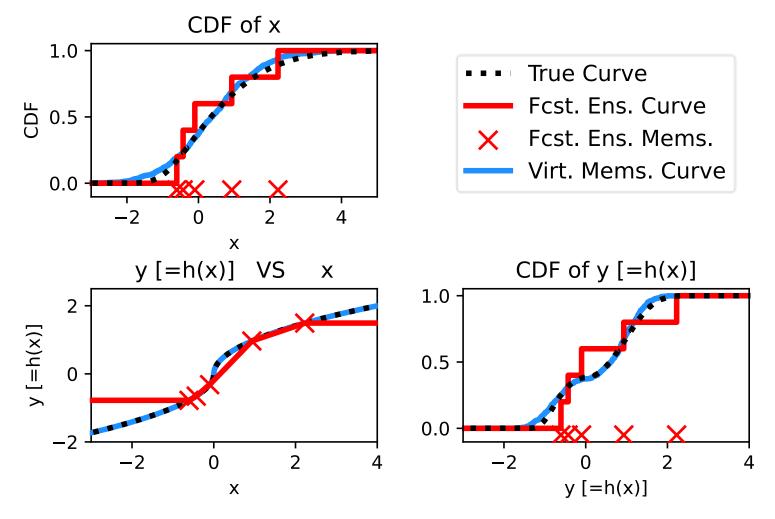
Virtual members' x-y curve is better than the forecast members' x-y curve.

Implies PESE-GC improves regression used by EnsDA.

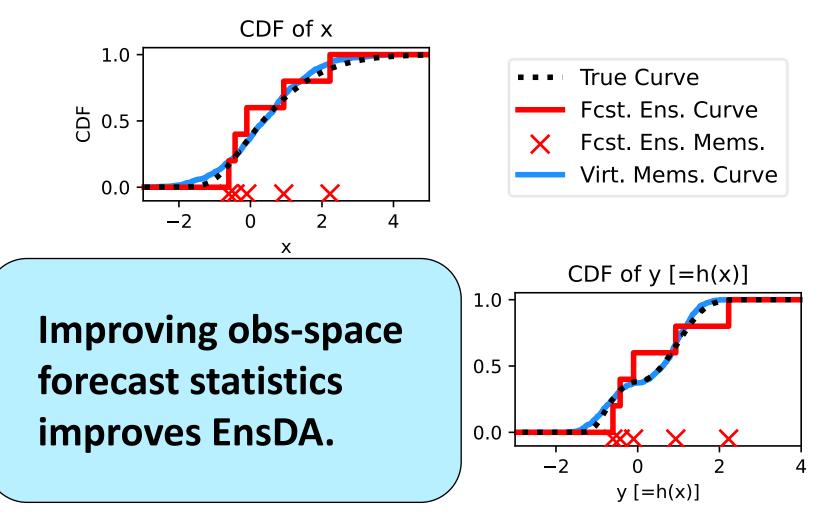
Sampled relationship btwn obs & model quantities.
 Obs-space forecast statistics



Sampled relationship btwn obs & model quantities.
 Obs-space forecast statistics



Sampled relationship btwn obs & model quantities.
 Obs-space forecast statistics



Main Message

PESE-GC employs users' knowledge of 1D forecast PDFs* to create additional model-space ensemble members.

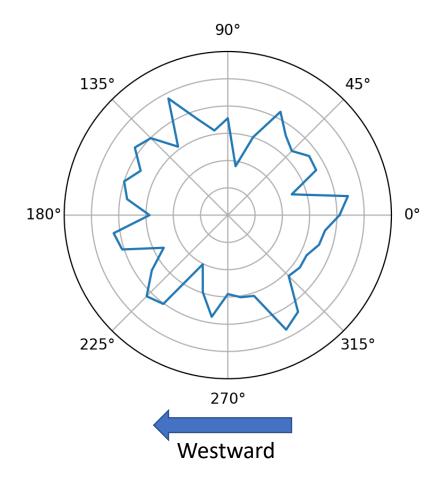
- * Aka, marginal forecast PDFs
- ** Tested using Lorenz 1996 model.

Main Message

PESE-GC employs users' knowledge of 1D forecast PDFs* to create additional model-space ensemble members.

- * Aka, marginal forecast PDFs
- ** Tested using Lorenz 1996 model.

PESE-GC is tested with 40-variable Lorenz 1996 "wave-on-a-ring" model



Setup of tests

Model settings: F=8.0, dt=0.05

Used NCAR's Data Assimilation Research Testbed (DART)

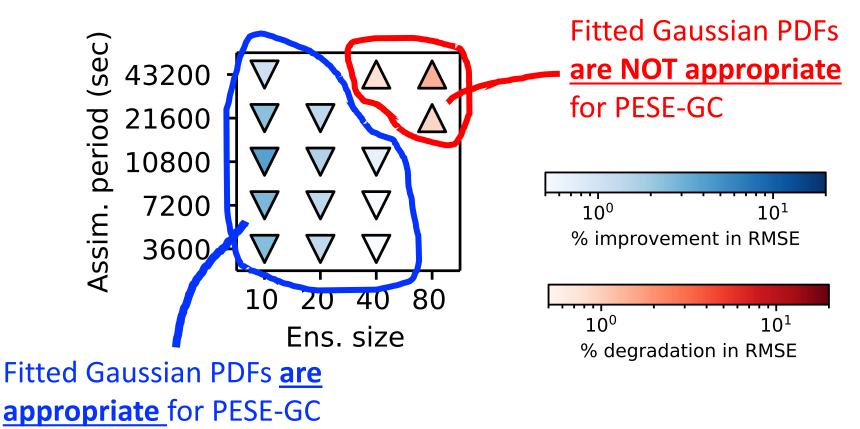
EAKF is used as EnsDA algo*

PESE-GC assumes all marginal forecast PDFs are Gaussian

Obs op:
$$h(x) = sign(x) \sqrt{|x|}$$

PESE-GC* improves EAKF when assumed marginal PDFs** are appropriate

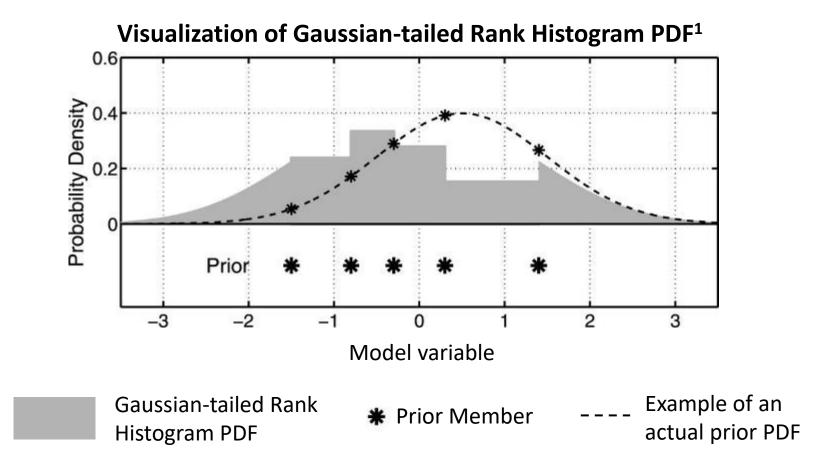
* PESE-GC increased ensemble size by a factor of 20
** Assumed PDFs are Gaussian in these tests.



What if the user knows very little about the forecast marginals?

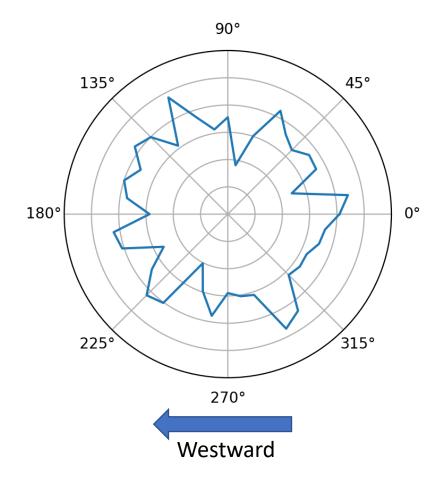
We can use non-parametric (i.e., "data-driven") approximations!

A non-parametric marginal PDF Gaussian-tailed Rank Histogram PDF



¹Figure from Anderson, J. L., 2010: A Non-Gaussian Ensemble Filter Update for Data Assimilation. Mon. Wea. Rev., 138, 4186–4198, https://doi.org/10.1175/2010MWR3253.1.

PESE-GC is tested with 40-variable Lorenz 1996 "wave-on-a-ring" model



Setup of tests

Used NCAR's Data Assimilation Research Testbed (DART)

Rank histogram filter (RHF) with nonlinear regression used as EnsDA algo*

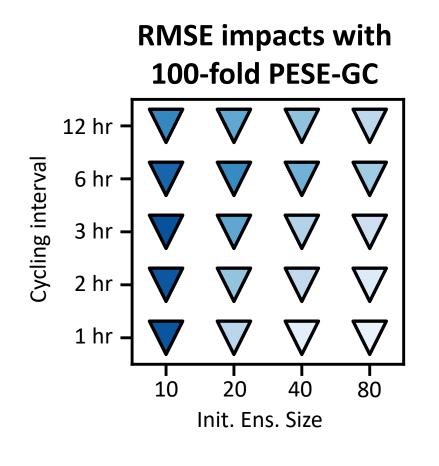
Non-parametric marginal PDFs used with PESE-GC

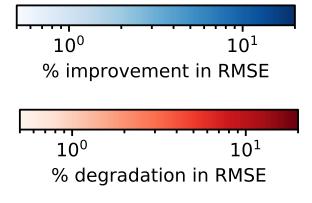
Obs op:
$$h(x) = sign(x) \sqrt{|x|}$$

*Also tested with Perturbed Obs EnKF and EAKF.

PESE-GC improves RHF

These tests use PESE-GC with non-parametric marginals





All tested RHF setups were improved!

Main Message

PESE-GC employs users' knowledge of 1D forecast PDFs* to create additional model-space ensemble members.

- * Aka, marginal forecast PDFs
- ** Tested using Lorenz 1996 model.

Main Message

PESE-GC employs users' knowledge of 1D forecast PDFs* to create additional model-space ensemble members.

- * Aka, marginal forecast PDFs
- ** Tested using Lorenz 1996 model.

Avenues for future work

- 1. Build localization into PESE-GC [e.g., via ensemble modulation (Bishop and Hodyss, 2009)]
- 2. Test with realistic geophysical models
- 3. Does PESE-GC improve particle filter performance?
- 4. Can PESE-GC improve ML/AI in low-data situations?

Fin.

Thank you for your attention! Happy to take questions & comments.

Manuscript submitted to Nonlinear Processes in Geophysics. ³⁶

Main Message

PESE-GC employs users' knowledge of 1D forecast PDFs* to create additional model-space ensemble members.

This reduces sampling errors, thus improving EnsDA**.

- * Aka, marginal forecast PDFs
- ** Tested using Lorenz 1996 model.

Manuscript submitted to Nonlinear Processes in Geophysics. 37