

Assimilation of 3D radar information at convective scales at **Deutscher Wetterdienst (DWD)**

9th International Symposium on Data Assimilation (ISDA)

16-20 Oct 2023

Kobra Khosravian, Klaus Stephan, Alberto De Lozar, Lisa Neef, Jana Mendrok, Yuefei Zeng, Sven Ulbrich and Ulrich Blahak

Short introduction of radar data assimilation in ICON-LAM

2 ways of radar data assimilation at DWD

- 2D rain rate composites via LHN:
- Adjust dynamically model state during model integration
- Independent of data assimilation algorithm (LETKF)
- No restriction by other observation
- Including OPERA composite

- Circles: radar network for 3D radar data assimilation
- Grey area: 2D rain rate composite assimilation via LHN (ICON-D2 domain)

- > 3D radar data assimilation (DBZH and VRAD):
 - Using forward operator "EMVORADO"
 - Constraining of radar data by other observation via LETKF
 - Using correlation of model ensemble to update all model variable
 - Applied only for German radar network
 - Using OPERA data in progress
 - Operational in ICON-D2 parallel routine since Jun 2020

Short range NWP (SRNWP) system at DWD

ICON-D2

- Same (D2) model domain
- 1-mom microphysics parameterization in ICON-LAM
- Hourly assimilation of 3D radar data + LHN + conventional observation (radio sounding (TEMP), Aircraft (AIREP), SYNOP stations, wind profile, BUOY) + SEVIRI VIS channel using LETKF
- Continues assimilation cycle
- Longer cut off time (assimilation of about 98% of observation)

Start forecast cycle every 3 h with lead-time of 48 h

ICON-RUC

- Same (D2) model domain
- 2-mom microphysics parameterization in ICON-LAM
- Hourly assimilation of 3D radar data + LHN + conventional observation (radio sounding (TEMP), Aircraft (AIREP), SYNOP stations, wind profile, BUOY) + SEVIRI VIS channel using LETKF
- New assimilation cycle starting at 3 UTC branching from ICON-D2
- Shorter cut-off time (assimilation of less conventional data)
- Hourly new forecast cycle with a lead-time of 14 h

6h forecast verification of reflectivity and precipitation

over Germany - From 02 until 09 Dec 2022

Deutscher Wetterdienst Wetter und Klima aus einer Hand

- Starting the test phase for the integration of the European radar network (OPERA) into the KENDA assimilation cycle \rightarrow K. Stephan
- ✤ Further investigation and improvement of targeted covariance inflation (TCI) → K. Vobig
- Assimilation of radar objects \rightarrow L. Neef
- Investigating polarimetric radar data to enhance the forward model (EMVORADO) output and integrate it into the assimilation system → J.
 Mendrok, K. Khosravian
- Conducting tests on the new configurations for the 2-mom microphysics ICON model and EMVORADO to assess their influence on the assimilation system → A. D. Lozar, U. Blahak, K. Khosravian

- ✤ Starting the test phase for the integration of the European radar network (OPERA) into the KENDA assimilation cycle → K. Stephan
- ✤ Further investigation and improvement of targeted covariance inflation (TCI) → K. Vobig
- Assimilation of radar objects \rightarrow **L. Neef**
- Investigating polarimetric radar data to enhance the forward model (EMVORADO) output and integrate it into the assimilation system → J.
 Mendrok, K. Khosravian
- Conducting tests on the new configurations for the 2-mom microphysics ICON model and EMVORADO to assess their influence on the assimilation system → A. D. Lozar, U. Blahak, K. Khosravian

Precipitation verification (1 mm/h) case study: 22 Apr 2023 at 10 UTC (1h forecast)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Good improvement due to French data, up to 3h forecast

From K. Stephan

- Starting the test phase for the integration of the European radar network $\mathbf{\mathbf{x}}$ (OPERA) into the KENDA assimilation cycle \rightarrow K. Stephan
- $\mathbf{\mathbf{x}}$ Further investigation and improvement of targeted covariance inflation $(TCI) \rightarrow K. Vobig$
- Assimilation of radar objects \rightarrow L. Neef *
- Investigating polarimetric radar data to enhance the forward model $\mathbf{\mathbf{x}}$ (EMVORADO) output and integrate it into the assimilation system \rightarrow **J**. Mendrok, K. Khosravian
- Conducting tests on the new configurations for the 2-mom microphysics \mathbf{x} ICON model and EMVORADO to assess their influence on the assimilation system \rightarrow **A. D. Lozar, U. Blahak, K. Khosravian**

Assimilation of radar objects

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Reflectivity Verification aggregation over 16 h forecast in July 2021

From L. Neef

- ✤ Starting the test phase for the integration of the European radar network (OPERA) into the KENDA assimilation cycle → K. Stephan
- ✤ Further investigation and improvement of targeted covariance inflation (TCI) → K. Vobig
- Assimilation of radar objects \rightarrow L. Neef
- Investigating polarimetric radar data to enhance the forward model (EMVORADO) output and integrate it into the assimilation system → J.
 Mendrok, K. Khosravian
- Conducting tests on the new configurations for the 2-mom microphysics ICON model and EMVORADO to assess their influence on the assimilation system → A. D. Lozar, U. Blahak, K. Khosravian

Investigating polarimetric radar data

Deutscher Wetterdienst Wetter und Klima aus einer Hand

- above-ML slope reduced
- clear brightband top
- offset reduced in and below ML
- \rightarrow graupel size & amount strongly reduced
- flatter profile in DGL, increase at lower T
- low-T ZDR still too high \rightarrow too large cloud ice?
- aggregation layer ZDR still too low
- excessive ZDR below ML strongly reduced
- ZDR-max & avg. below-ML ZDR still too high
- ZDR-max still too far down
- brightband bottom still smeared out

From J. Mendrok

- Starting the test phase for the integration of the European radar network $\mathbf{\mathbf{x}}$ (OPERA) into the KENDA assimilation cycle \rightarrow K. Stephan
- $\mathbf{\mathbf{x}}$ Further investigation and improvement of targeted covariance inflation $(TCI) \rightarrow K.$ Vobig
- Assimilation of radar objects \rightarrow L. Neef \mathbf{x}
- Investigating polarimetric radar data to enhance the forward model (EMVORADO) output and integrate it into the assimilation system \rightarrow **J**. Mendrok, K. Khosravian
- Conducting tests on the new configurations for the 2-mom microphysics * ICON model and EMVORADO to assess their influence on the assimilation system \rightarrow A. D. Lozar, U. Blahak, K. Khosravian

The new configurations for the 2-mom microphysics ICON model and EMVORADO

- New changes in 2-mom microphysics (from now less-sticky microphysic):
 - Reduced collision efficiency of graupel by 50%
 - □ Faster graupel velocity according to Heims et al.
 - Graupel can form for T > 0
 - Lower limit of Connley et al. for snow sticking efficiency
 - Old Bright Band Settings in EMVORADO (wet T > -10)

Dynamic melting layer instead of fixed melting layer in EMVORADO

Traditionally, wet growth (wet particles above freezing level) assumed for graupel / hail down to $-3^{\circ}C$ / $-10^{\circ}C$ everywhere.

New scheme: assume wet growth only at such grid points where model state suggests it to be physically plausible (supercooled liquid + "large enough" particles) /

Turning off the attenuation correction in EMVORADO

Radar reflectivity composite plots over German radar network from radar elevation of 0.5

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Radar reflectivity composite plots over German radar network from radar elevation of 0.5

Deutscher Wetterdienst Wetter und Klima aus einer Hand

ISDA

16-20 Oct Kobra Khosravian

ISDA 16-20 Oct Kobra Khosravian

10

ISDA 16-20 Oct Kobra Khosravian

10

The new configurations for the 2-mom microphysics ICON model and EMVORADO

New changes in 2-mom microphysics (from now less-sticky microphysic):

- Reduced collision efficiency of graupel by 50%
- □ Faster graupel velocity according to Heims et al.
- □ Graupel can form for T > 0
- Lower limit of Connley et al. for snow sticking efficiency
- Old Bright Band Settings in EMVORADO (wet T > -10)

Dynamic melting layer instead of fixed melting layer in EMVORADO

Traditionally, wet growth (wet particles above freezing level) assumed for graupel / hail down to $-3^{\circ}C$ / $-10^{\circ}C$ everywhere.

New scheme: assume wet growth only at such grid points where model state suggests it to be physically plausible (supercooled liquid + "large enough" particles) /

Turning off the attenuation correction in EMVORADO

Reflectivity verification_FSS and bias over Germany - from 16 Aug to 4 sep 2022

Reflectivity verification_FSS and bias over Germany - from 16 to 29 Aug 2022

Summary and outlook

Summary

- Radar data assimilation significantly improves reflectivity and precipitation verification.
- The integration of the European radar network into the assimilation system significantly enhances the ability to detect missed cells in convective events.
- The new configurations in 2-mom microphysics and EMVORADO can potentially reduce overestimations in higher reflectivity and enhance the ability to capture the structure of convective cells more effectively.

Outlook

- Continuing to integrate additional radar data from the OPERA network while enhancing their configuration within the KENDA system.
- Continuing the investigation of the new configurations in 2-mom ICON microphysics and EMVORADO.
- Continuing the investigation of the radar polarimetric variables to enhance EMVORADO and integrate them into the assimilation system.
- Continuing the investigation of object assimilation and enhancement of TCI.

Deutscher Wetterdienst Wetter und Klima aus einer Hand

case study: 20 Jun 2022 at 8 UTC

Dr. Kobra Khosravian Deutscher Wetterdienst Frankfurter Str. 135 63067 Offenbach Germany

Thank you for your attention

Tel. +49-69-8062-3186 Email kobra.khosravian@dwd.de

