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Motivations
• Departure from Gaussian tails is a common feature of geophysical
inference problems due to the nonlinear dynamical and observation
processes and the uncertainty from the physical sensors.

• Many filters like the EnKF assume that the tails of the forecast distribu-
tion are Gaussian and not suited for heavy-tailed filtering problems.

• How can we do consistent inference in this setting?

Filtering problem and measure transport
Setting : Nonlinear state-space model for (xt,yt):
Dynamical model xt+1 = f (xt) +wt ∈ Rn, wt ⊥ xt

Observation model yt = h(xt) + ϵt ∈ Rd, ϵt ⊥ xt

Filtering problem
Sequentially estimate the distribution for Xt given all the observations
available up to that time y1,y2, . . . ,yt.

Ensemble filters propagate a set of M particles {x(1), . . . ,x(M)} to form an
empirical approximation for the filtering density πXt | y1:t

= πt | t.

Analysis step: mapping the prior πt | t−1 to posterior πt | t

Prior πt | t−1 Posterior πt | t

xi T (xi)

Analysis map T

Analysis map of the Kalman filter : TKF (y,x) = x−ΣXt,Yt
Σ−1

Yt
(y − y⋆)

How to build the analysis map T? Use measure transport theory

A transport map S between 2 distributions π (target) and η (reference) is
a transformation s.t. if x ∼ π ⇒ S(x) ∼ η. We say that S pushes forward
π to η, i.e., S♯π = η.

Densities

S♯πS♯η

Target π
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S(x)S−1(z)

Aim: find a transport map suited for conditional inference
We use the Knothe-Rosenblatt (KR) rearrangement S btw π and η:
The unique lower triangular and strictly monotone map s.t. S♯π = η

S(z) = S(z1, z2, · · · , zm) =


S1 (z1)
S2 (z1, z2)
...
Sm (z1, z2, . . . , zm)

 .

The KR has many nice features for conditional inference:

• The 1D map ξ 7→ Sk(x1:k−1, ξ) characterizes the marginal conditional
πXk | X1:k−1=x1:k−1

(ξ).
•S−1 and det∇S(x) are fast to evaluate.

Gaussian case
Consider X ∼ πX = N (µ,Σ) and let LL⊤ = Σ−1 (Cholesky). Then
S(x) = L(x− µ) is the KR that pushes forward πX to η = N (0n, In).

Takeaways
• Using measure transport theory, we introduce a new ensemble filter, called
ensemble robust filter (EnRF), for heavy-tailed filtering problems.

• The EnRF can adapt its prior-to-posterior update to the tail-heaviness of the
data.

• The EnRF features tuning-free inflation and localization.

Construction of the analysis map T , [1]

Let’s partition the KR rearrangement S s.t. S♯πY,X = η: S(y,x) =

[
SY(y)

SX (y,x)

]
• The map ξ 7→ SX (y⋆, ξ) pushes forward πX | Y(· | y⋆) to η • SX (Y,X) ∼ η

• Analysis map T (y,x) = SX (y⋆, ·)−1 ◦ SX (y,x)

πY,X

η

πX | Y=y⋆

SX (y,x)

SX (y⋆, ·)−1 ◦ SX (y,x)

SX (y⋆, ·)−1

A taxonomy of ensemble filters
Ensemble filters differ in the choice of

• The reference density η

• The class of approximating functions for SX or T
• The estimation of SX or T from samples

Stochastic EnKF: η = N (0, I) + Linear SX + Sample-based covariance estimator

t–distributions have tunable tail-heaviness
t–distributions are parameterized by a mean µX ∈ Rn, a scale matrix (PD) CX ∈ Rn×n,
and a degree of freedom (DOF) ν ∈ [1,∞[.

The degree of freedom ν characterizes the tail-heaviness:

• For ν = 1, we recover the Cauchy distribution (algebraic tails)
• For ν = ∞, we recover the Gaussian distribution (exponential tails)

Our contribution
• We choose a t–distributed reference distribution ην with tunable DOF ν to adapt to
the tail-heaviness of the data.

• We restrict SX to be linear

Construction of Tν

For a joint t–distribution πY,X with DOF ν, let Sν = [SY
ν ;S

X
ν ] be the KR rearrangement s.t.

Sν♯πY,X = ην = St (0, I, ν).

We obtain the analysis map Tν by partial inversion of SX
ν :

Tν(y,x) = µX +CX,YC
−1
Y (y⋆ − µY) +

√
αY

(
y⋆
)

αY

(
y
) [

(x− µX)−CX,YC
−1
Y (y − µY)

]
,

with αY

(
y
)
=

ν + (y − µY)
⊤C−1

Y (y − µY)

ν + d

Appealing features of Tν

•Tν converges to Kalman filter for ν → ∞.

•Tν is robust to outlying synthetic observations, i.e., y ∼ πY with large αY

(
y
)
.

•Tν embeds an adaptive (ν) and data-dependent (y⋆) multiplicative inflation.

Estimate Tν from samples
Goal : Estimate Tν from joint forecast samples {y(i)

t ,x
(i)
t } ∼ πYt,Xt

→ ensemble robust filter (EnRF).
Our strategy:

• Leverage the conditional independence of πYt,Xt
∼ sparsity of C−1

Yt,Xt

• Use the tlasso [2]: a ℓ1-regularized expectation-maximization algorithm
for t–distributions to estimate the statistics of πYt,Xt

:

Plug and play
The EnRF features tuning-free inflation and localization.

Analysis step of the ensemble robust filter (EnRF)

x
(i)
t ∼ πXt

Sample y
(i)
t from πYt | Xt

(· | x(i)
t ):

y(i) = h(x
(i)
t ) + ϵ

(i)
t

{(y(i)
t ,x

(i)
t )} ∼ πYt,Xt

Estimate πYt,Xt
from {(y(i)

t ,x
(i)
t )}

with tlasso

Estimated distribution
Estimate and apply T̂ν:
x
(i)
t,a = T̂ν(y

(i)
t ,x

(i)
t )

x
(i)
t,a ∼ πXt | Yt=y⋆

Results
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Figure: Evolution of the RMSE with the
ensemble size M for the Lorenz-63
model with t–distributed observation
noise with ν = 3.0.
Reduction of the RMSE by 27% without
tuning of the EnRF.
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Figure: Evolution of the RMSE with the
ensemble size M for the Lorenz-96
model with t–distributed observation
noise with ν = 3.0.
Reduction of the RMSE by 25% without
tuning of the EnRF.

Links
• ArXiv print: https://arxiv.org/abs/2310.08741
• Github repository: https://github.com/mleprovost/Paper-Ensemble-Robust-Filter.jl
• Correspondence email: mleprovo@mit.edu
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