An ensemble filter for heavy-tailed distributions

Motivations

• Departure from Gaussian tails is a common feature of geophysical inference problems due to the nonlinear dynamical and observation **processes** and the uncertainty from the physical sensors.

• Many filters like the EnKF assume that the tails of the forecast distribution are Gaussian and **not suited** for **heavy-tailed filtering problems**.

• How can we do **consistent inference** in this setting?

Filtering problem and measure transport

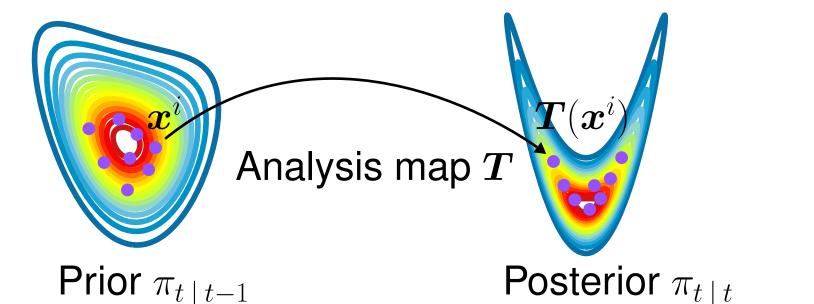
Setting : Nonlinear state-space model for $(\boldsymbol{x}_t, \boldsymbol{y}_t)$: Dynamical model $\boldsymbol{x}_{t+1} = \boldsymbol{f}(\boldsymbol{x}_t) + \boldsymbol{w}_t \in \mathbb{R}^n, \ \boldsymbol{w}_t \perp \boldsymbol{x}_t$ Observation model $\boldsymbol{y}_t = \boldsymbol{h}(\boldsymbol{x}_t) + \boldsymbol{\epsilon}_t \in \mathbb{R}^d, \ \boldsymbol{\epsilon}_t \perp \boldsymbol{x}_t$

Filtering problem

Sequentially estimate the distribution for \mathbf{X}_t given all the observations available up to that time $\boldsymbol{y}_1, \boldsymbol{y}_2, \ldots, \boldsymbol{y}_t$.

Ensemble filters propagate a set of M particles $\{x^{(1)}, \ldots, x^{(M)}\}$ to form an empirical approximation for the filtering density $\pi_{\mathbf{X}_t \mid \mathbf{y}_{1:t}} = \pi_{t \mid t}$.

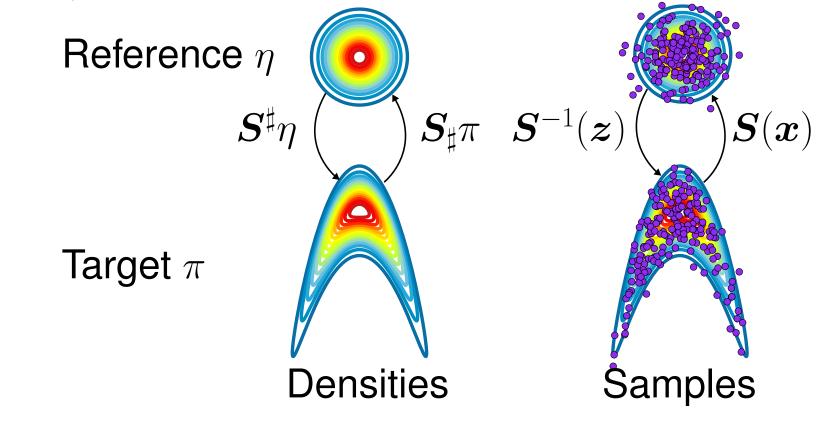
Analysis step: mapping the prior π_{t+t-1} to posterior π_{t+t}



Analysis map of the Kalman filter : $T_{KF}(y, x) = x - \Sigma_{X_t, Y_t} \Sigma_{Y_t}^{-1}(y - y^*)$

How to build the analysis map T? Use measure transport theory

A transport map S between 2 distributions π (target) and η (reference) is a transformation s.t. if $\boldsymbol{x} \sim \pi \Rightarrow \boldsymbol{S}(\boldsymbol{x}) \sim \eta$. We say that \boldsymbol{S} pushes forward π to η , i.e., $S_{\sharp}\pi = \eta$.



Aim: find a transport map suited for conditional inference We use the Knothe-Rosenblatt (KR) rearrangement S btw π and η : The unique lower triangular and strictly monotone map s.t. $S_{\sharp}\pi = \eta$

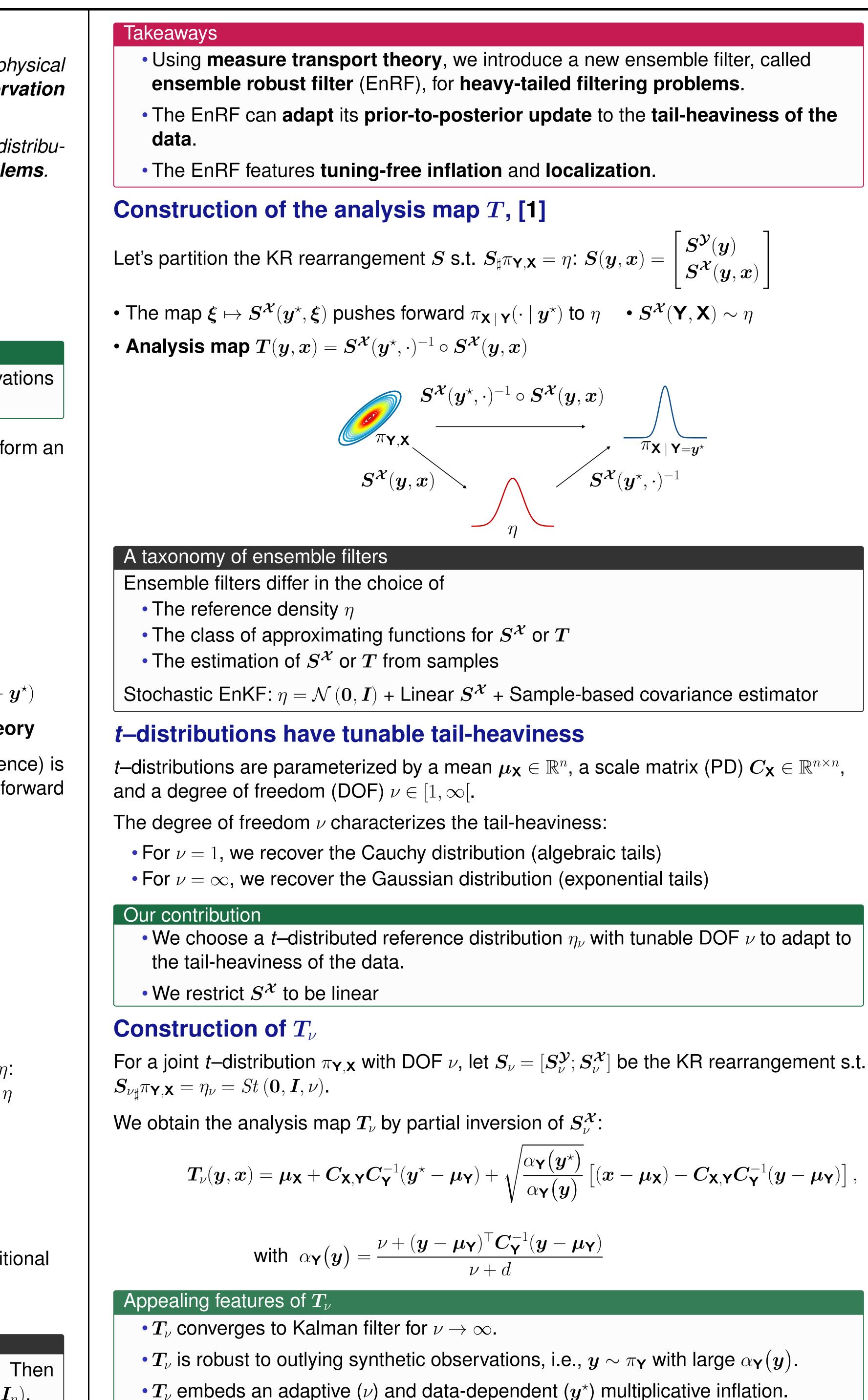
$$oldsymbol{S}(oldsymbol{z}) = oldsymbol{S}(z_1, z_2, \cdots, z_m) = egin{bmatrix} S^1 \, (z_1) \ S^2 \, (z_1, z_2) \ dots \ S^m \, (z_1, z_2, \dots, z_m) \end{bmatrix}$$

The KR has many nice features for conditional inference:

- The 1D map $\xi \mapsto S^k(x_{1:k-1},\xi)$ characterizes the marginal conditional $\pi_{\mathsf{X}_k \mid \mathbf{X}_{1:k-1} = \mathbf{x}_{1:k-1}}(\xi)$.
- S^{-1} and det $\nabla S(x)$ are fast to evaluate.

Gaussian case

Consider $X \sim \pi_X = \mathcal{N}(\mu, \Sigma)$ and let $LL^+ = \Sigma^{-1}$ (Cholesky). Then $S(x) = L(x - \mu)$ is the KR that pushes forward π_{x} to $\eta = \mathcal{N}(\mathbf{0}_{n}, \mathbf{I}_{n})$.



Mathieu Le Provost¹, Ricardo Baptista², Youssef Marzouk¹, and Jeff D. Eldredge³

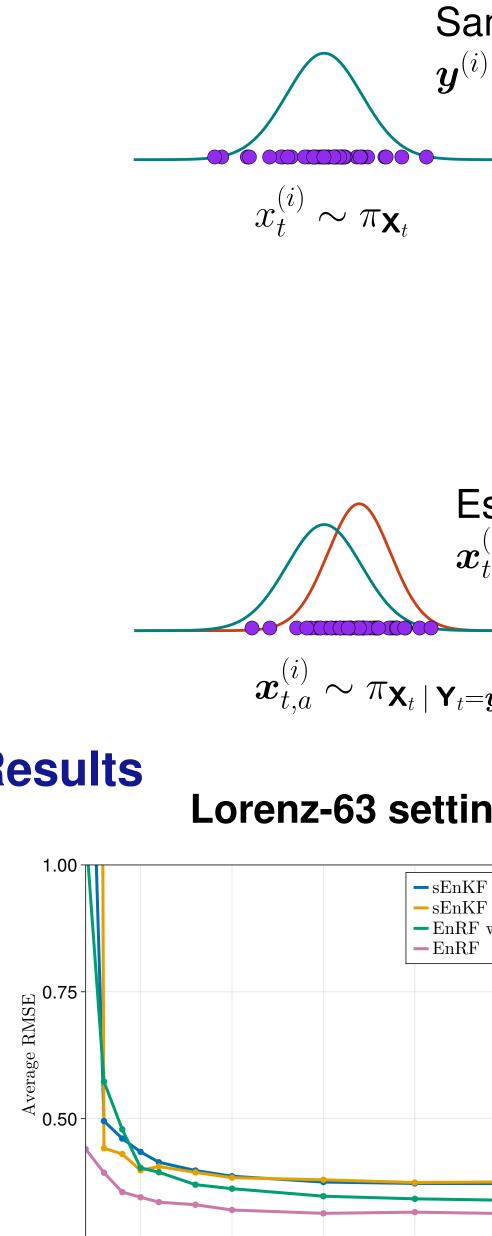
Massachusetts Institute of Technology, ² California Institute of Technology, ³ University of California, Los Angeles

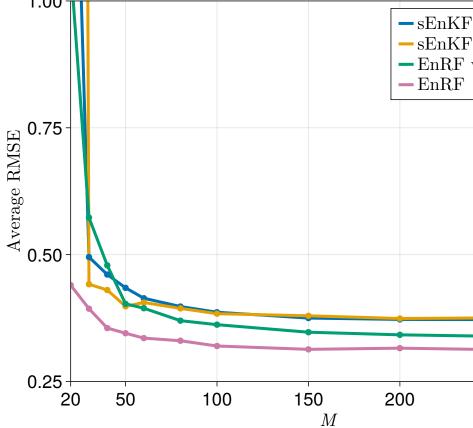
$$oldsymbol{S}(oldsymbol{y},oldsymbol{x}) = egin{bmatrix} oldsymbol{S}^{oldsymbol{\mathcal{Y}}}(oldsymbol{y})\ oldsymbol{S}^{oldsymbol{\mathcal{X}}}(oldsymbol{y},oldsymbol{x}) \end{bmatrix}$$

$$egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} \pi egin{array}{c} egin{array}{c} \pi egin{array}{c} egin{array}{c} \pi egin{array}{c} \pi egin{array}{c} egin{array}{c} egin{array}{c} \pi egin{array}{c} egin{array}{c} egin{array}{c} \pi egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} \pi egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} \pi egin{array}{c} egin{$$

$$- \left[(oldsymbol{x} - oldsymbol{\mu}_{oldsymbol{X}}) - oldsymbol{C}_{oldsymbol{X},oldsymbol{Y}} oldsymbol{C}_{oldsymbol{Y}}^{-1} (oldsymbol{y} - oldsymbol{\mu}_{oldsymbol{Y}})
ight],$$

Estimate T_{ν} from samples **Goal :** Estimate T_{ν} from joint forecast samples $\{y_t^{(i)}, x_t^{(i)}\} \sim \pi_{\mathbf{Y}_t, \mathbf{X}_t}$ \rightarrow ensemble robust filter (EnRF). Our strategy: • Leverage the conditional independence of $\pi_{\mathbf{Y}_t,\mathbf{X}_t} \sim \text{sparsity of } C_{\mathbf{Y}_t,\mathbf{X}_t}^{-1}$ • Use the tlasso [2]: a l1-regularized expectation-maximization algorithm for *t*-distributions to estimate the statistics of $\pi_{\mathbf{Y}_t, \mathbf{X}_t}$: Plug and play The EnRF features tuning-free inflation and localization. Analysis step of the ensemble robust filter (EnRF) Sample $\boldsymbol{y}_{t}^{(i)}$ from $\pi_{\mathbf{Y}_{t} \mid \mathbf{X}_{t}}(\cdot \mid \boldsymbol{x}_{t}^{(i)})$: $\boldsymbol{y}^{(i)} = \boldsymbol{h}(\boldsymbol{x}_{t}^{(i)}) + \boldsymbol{\epsilon}_{t}^{(i)}$ $x_{\star}^{(i)} \sim \pi_{\mathbf{X}_t}$ $\{(oldsymbol{y}_t^{(i)},oldsymbol{x}_t^{(i)})\}\sim \pi_{oldsymbol{Y}_t,oldsymbol{X}_t}$ Estimate $\pi_{\mathbf{Y}_t, \mathbf{X}_t}$ from $\{(\boldsymbol{y}_t^{(i)}, \boldsymbol{x}_t^{(i)})\}$ with tlasso Estimated distribution Estimate and apply T_{ν} : $oldsymbol{x}_{t,a}^{(i)} = \widehat{oldsymbol{T}}_{ u}(oldsymbol{y}_t^{(i)},oldsymbol{x}_t^{(i)})$ $oldsymbol{x}_{t.a}^{(i)} \sim \pi_{oldsymbol{X}_t \,|\, oldsymbol{Y}_t = oldsymbol{y}^\star}$ Results Lorenz-96 setting Lorenz-63 setting -sEnKF -sEnKF - sEnKF – glasso -sEnKF - glasso - EnRF with $\nu = 100$ - EnRF with $\nu = 100$ 0.50 200 250 300 Figure: Evolution of the RMSE with the Figure: Evolution of the RMSE with the ensemble size M for the Lorenz-63 ensemble size M for the Lorenz-96 model with *t*-distributed observation model with *t*-distributed observation noise with $\nu = 3.0$. noise with $\nu = 3.0$. **Reduction of the RMSE by** 25% without **Reduction of the RMSE by** 27% without tuning of the EnRF. tuning of the EnRF. Links ArXiv print: https://arxiv.org/abs/2310.08741





- Correspondence email: mleprovo@mit.edu

References

- 921-953 (Nov. 2022).
- arXiv:1408.2033 (2014).

Acknowledgements

2028125.

• Github repository: https://github.com/mleprovost/Paper-Ensemble-Robust-Filter.jl

. Spantini, A., Baptista, R. & Marzouk, Y. Coupling Techniques for Nonlinear Ensemble Filtering. SIAM Review 64. Publisher: Society for Industrial and Applied Mathematics,

2. Finegold, M. A. & Drton, M. Robust graphical modeling with t-distributions. *arXiv preprint*