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Abstract
We introduce a low-rank factorization of the EnKF (LREnKF) for non-local
observations (e.g., radiances measured by satellites, fluxes through sur-
faces, or solutions of elliptic PDEs). Classical regularization techniques
assume that the observations have local state dependence and sup-
press all correlations at long distances. For non-local observations,
we cannot separate slowly decaying physical interactions from spuri-
ous long-range correlations. Instead, non-local inverse problems have
structure: a low-dimensional projection of the observations strongly in-
forms a low-dimensional subspace of the state space.

Filtering problem
Consider a nonlinear state-space model for (xt,yt):
▶Nonlinear and non-local dynamics xt+1 = f (xt) +wt ∈ Rn

▶Nonlinear and non-local observations yt = h(xt) + ϵt ∈ Rd

where wt, ϵt are independent Gaussian random variables

Filtering problem
Sequentially estimate the distribution for Xt given all the observations
available up to that time y1,y2, . . . ,yt.

Elliptic observation model
Consider a Poisson equation evaluated at d locations {rj} ∈ Ω:

∇2ut(rj) = q(rj;xt), with ut(r) = 0 for ||r|| → ∞ (1)

where q(r;xt) is a forcing term that depends nonlinearly on the state xt.

By convolution with the Green’s function G of the Laplacian ∇2,

ut(rj) =

∫
s∈Ω

G(rj − s)q(s;xt)ds. (2)

The solution ut of the elliptic PDE (2) is a non-local function of xt.

Inference with elliptic observations
Estimate the state Xt from limited and noisy evaluations of the solution
ut of the elliptic PDE (2):
[yt]j = ut(rj) + [ϵt]j, j = 1, . . . , d.

Ensemble Kalman filtering
Kalman filter update: xat = xt − ΣXt,Yt

Σ−1
Yt︸ ︷︷ ︸

Kalman gain Kt

(yt − y⋆t )

The EnKF constructs an estimate K̂t ∈ Rn×d from M forecast (i.e., prior)
samples {x(1)

t , . . . ,x
(M)
t } with M ≪ n, d.

Regularization of the EnKF
Estimated gain K̂t suffers from • rank-deficiency, sampling errors,

• spurious long-range state correlations.

Regularization of K̂t is essential in high-dimensions.

Limitations of distance localization
Distance localization regularizes K̂t by systematically removing all
long-range interactions.

Not suited for elliptic observations, as we cannot disentangle:
▶ the slowly decaying physical interactions (algebraic decay of the

Green’s function G)
▶ the spurious long-range correlations (finite ensemble size)

How to regularize K̂t with non-local observations?

Low-rank informative structure
▶Only part of the state is informed by the

observations
▶Only part of the observation space is

relevant to the states

Perform the inference in the low-dimensional informative subspaces.

Low-rank factorization of the Kalman gain
For a linear-Gaussian observation model:

Y = HX + E , X ∼ N (0,ΣX) , E ∼ N (0,ΣE) .

The SVD of the whitened observation matrix is given by H̃ = Σ
−1/2
E HΣ

1/2
X ∈ Rd×n reads:

H̃ = U︸︷︷︸
observation modes

Λ︸︷︷︸
singular values

V ⊤︸︷︷︸
state modes

.

Thus, the Kalman gain K factorizes as:

K = ΣX,YΣ
−1
Y = Σ

1/2
X V Λ(Λ2 + Id)

−1U⊤Σ−1/2
E .

Decomposition of the inference process
The innovation term (y − y⋆) is: 1. Whitened and rotated

2. Assimilated in the informative subspace
3. Lifted to the original space

How can we identify the informative directions that generalize the columns of U and V
for nonlinear models?

Y = h(X) + E , X ∼ πX = N (0, I) , E ∼ N (0, I)

Idea: Compute the top rX, rY eigenvectors of the state Gramian CX ∈ Rn×n and
observation Gramian CY ∈ Rd×d using gradient information of h (i.e., ∇h):

▶CX =
∫
∇h(x)⊤∇h(x)dπX(x) [1] ▶CY =

∫
∇h(x)∇h(x)⊤dπX(x) [2]

Algorithm for the low-rank EnKF (LREnKF)
1. Compute the first rX, rY eigenvectors of ĈX, ĈY with rX ≪ n and rY ≪ d.

2. Project the states and observation samples {x(i)
t ,y

(i)
t } on these eigenvectors.

3. Compute the Kalman gain K̆t ∈ RrX×rY in this low-dimensional projected subspace.
4. Lift the result to the original space.

For elliptic inverse problems, a few eigenvectors capture the row/column spaces of Kt.

Optimal bias-variance trade-off

We estimate a lower dimensional Kalman gain K̆t in the span of the informative
directions resulting in a lower variance estimator than the stochastic EnKF.

Lagrangian data assimilation in inviscid vortex models
Estimate the positions and strengths of N vortices over time from pressure sensors.

State: positions {r1, . . . , rN} and strengths {Γ1, . . . ,ΓN} of the point vortices.
Dynamical model (Biot-Savart law): Vortices are advected by the local velocity v given
by the curl of the streamfunction ψ.

v = ∇× (ψez), with ∇2ψ = −ω = −
∑
J

ΓJδ(r − rJ)

Observation model: Poisson equation for the pressure p

∇2( p︸︷︷︸
unknown

+
1

2
ρ||v({rJ}, {ΓJ})||2) = ρ∇ · (v({rJ}, {ΓJ})× ω({rJ}, {ΓJ}))

Pressure observations nonlinearly encode information of the (entire state (elliptic PDE).

Inviscid toy vortex model

0 5 10 15
x

−2

−1

0

1

2

y

(a)

0 5 10 15
x

−2

−1

0

1

2

y

(b)
Figure: (a): True trajectories of
the point vortices. Pressure
sensors are depicted by grey
diamonds. (b): Estimated
trajectories of the vortices with
the LREnKF for M = 40 with
the ranks rX and rY set to
capture 99% of the cumulative
energy spectra.

Adaptive rank selection: Set rX, rY to achieve a threshold α ∈ [0, 1] for the
cumulative energy Ei =

∑i
j=1 λ

2
j/
∑

j λ
2
j in the eigenvalues λ2j of CX and CY

Figure: Panels [(a), (c)]: Median
eigenvalues of ĈX and ĈY.
Panels [(b), (d)]: Median normalized
cumulative energy Ei of ĈX and ĈY.

Fast spectral decay of ĈX and ĈY confirms the low-rank informative structure.

Figure: (a): Evolution of the
RMSE with the ensemble size
M . [(b)-(c)]: Time-history of the
ranks rX and rY of the LREnKF
for different energy ratios.
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