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1. Motivation 4. 1dealized experiments with a toy system

Problem
Given this background and obs, what the analysis should be like?
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 Image data (c.g. satellite radiances, radar reflectivity) are
increasing becoming important for NWP.

* (Challenges 1n assimilating image data:
* (1) non-Gaussian error distribution

* (2) dimensional redundancy

20 r

10 10}

0 | '

10 }

O..
-10 }

ANWARUNIONRWOO
S NWANONDWOO

COO00000000~
OCOO0OOOOOOO—

-20

-20
. . . -30 20 -10 0 10 20 30 30 20 -10 0 10 20 30 -30 -20 <10 0 10 20 30
* (3) inter-pixel correlation deal analvsis
background observation y
* Gaussian Anamorphosis (GA) 1s effective 1n accounting for Easy problem (to human eyes)
non-Gaussianity, but in practice, can be done only 1n a Solution: Simply shift the entire picture by a fixed amount.
univariate manner
Results
. Variational AutoEncoder (VAE) solves all of these three  Comparison with existing methods
. d) VAE+EnKF
Chauenges snnultaneously! ideal anl naive EnKF anl thinned EnKF anl TCVital-like anl A
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* Objective of this study: 2 o 2 2
- to formulate VAE as a multivariate GA 10 10 10 10
- to assess effectiveness of its application to R-tuning = - - - L[
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2. VAE: Schematic illustration - ~ - i
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uncorrelated Gaussian * Conventional methods all fail to preserve the shape
e oW vector z that follow ‘N(0,I) * With VAE, no detformation to the shape
., e Mapping from z to x,
P p(x|z), and x to z, p(z|x), 5. VAE training on real satellite data
Encoder: qq(z|x) Decoder: pe(x|z) are appr()leated by
z G o distribut * Work by Blin-Kim San (ENM, M¢téo-France) co-supervised
‘ ~° aussian distributions . . . o
"""" . with Loik Berre and Vincent Chabot (CNRM, Méteo-France)
high whose mean and variances
*PPEEE dimension
are neural networks. . . o
* Train VAE on 7 sequences of Himawari IR 1images sampled at
, | _*» These neural nets are . . . .
: From Kingma and Welling . 10-minute intervals, with the latent space having only 2
Dataset: D (2017) trained only from . :
arXiv:1906.02691 . . dlmenSlonS
realizations of x
°°°°° > _ prediction
* After training VAE, the encoder q,(z[x) can transform non- H G § 150
Gaussian high-dimensional variable x into an low- %H “N| “ .
dimensional uncorrelated Gaussian vector z 153F
* VAE can thus remove non-Gaussianity, dimensional o
redundancy, and inter-pixel correlation, all at once. ek soome
3. Proposed Method
Pre-train VAE | Non—-Gaussian DA
lassive amount of training data ygsing pre-trained VAE e
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via VAE encoder ! _
physical space via

VAE decoder

Transform observed data I
from high-dimensional space I
with complicated distribution 1

* VAE enables multi-dimensional Gaussian anamorphosis that 1s applicable to
complicated 2D 1mages like satellite radiances

* VAE also achieves dimension reduction and removal of correlation

* (Gaussian assimilation in the latent space of VAE preserves features of the data

* VAE 1s powerful enough to represent data as complex as real infrared satellite
radiance (work by Bin-Kim San)

encode

to low-dimensional latent I
space with simple distribution'!
And vice versa. :

(2) Perform Gaussian DA
in the Gaussian
atent space
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Estimate the transforms I
using VAE I




