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Motivations

▶ The L1 and L2 norms have been successful as regularization terms
in data assimilation (Freitag et al., 2010, 2013), but can introduce
oscillations in the solution (Schuster et al., 2012).

▶ The Lp-norm with 1 < p < 2 aims at making a compromise
between these 2 norms (”quasi-sparse” solution) and can mitigate
the occurence of spurious oscillations (Schuster et al., 2012).

▶ The use of the Lp-norm is also motivated by the statistical
distribution of physical variables following a generalized Gaussian
distribution.

Generalized Gaussian distribution

▶ Probability density function:

f (x ;α, µ, p) =
p

2αΓ(1/p)
e−( |x−µ|

α )
p

,

with µ ∈ R position parameter, α > 0 scale parameter and p > 0
shape parameter.

▶ Special case : Laplace distribution (p = 1) and Normal distribution
(p = 2).

▶ p close to 1: sparsity.
▶ Example: derivative of the Beaufort sea ice concentrations (Asadi

et al., 2019)

”Almost sparse” variables

▶ In between sparse and smooth variables.

▶ Example: sea ice concentration (EUMETSAT).

▶ Variational data assimilation in a 1D linear advection model

(Bernigaud et al., 2021).

▶ Staircase effect (L1-norm) and oscillations (L2-norm)
▶ Better results with p = 1.2 but slow decrease of the cost function.

Penalization of the 4D-var cost function
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with
▶ x0 ∈ Rn the initial condition, xb ∈ Rn the background state vector

and y ∈ Rm the observations;
▶H the observation operator, M the model;
▶ λ > 0 the weight of the regularization, 1 < p < 2, and Φ a linear

operator (projection on the Fourier or wavelet basis, derivative...).

Minimization in Banach spaces (Rn, ∥∥p)

▶ First-order descent algorithm:

xk+1 = xk︸︷︷︸
∈Rn

− αk f ′(xk).︸ ︷︷ ︸
∈Lc(Rn,R)

▶ f ′(xk) can be identified with an element of (Rn, ∥∥q), 1
p + 1

q = 1.
▶ Well defined iteration if p = q = 2 (Hilbert space).
▶ Numerical experiments in 1D: huge number of iterations if p ̸= q

(Bernigaud et al., 2021).
▶ Transport the direction in (Rn, ∥∥q) (Schuster et al., 2012):{

x∗
k+1 = x∗

k − αk f ′(jq(x∗
k))

xk+1 = jq(x∗
k+1)

with x∗
k = jp(xk), and the duality map jp : (Rn, ∥∥p) → (Rn, ∥∥q)

defined by

∀i = 1 · · · n, [jp(x)]i = sign(xi)|xi|p−1.

▶ Numerical experiments in 1D : significant reduction in the number
of iterations (Bernigaud et al., 2021).

A nonlinear conjugate gradient in dual
space

▶ Solving a nonlinear least square problem

f (x) =
1
2
∥A(x) − b∥2

2 +
λ

p
∥Φx∥p

p,

with A nonlinear.
▶ Global convergence property:
▶ Conditions on the length step αk .

▶ Faster decay of f over iterations:
▶ Choice of a direction pk+1 = −f ′(jq(x∗

k+1)) + βkpk , with βk to be
defined.

Algorithm NLCGDS (Bernigaud et al., 2023)

▶Wolfe-like conditions on αk in dual space:

▶ Full algorithm:

Bibliography

▶ Asadi N., Scott K.A., Clausi D.A.: Data fusion and data assimilation of ice
thickness observations using regularisation framework, Tellus A, 71(1), 2019.

▶ Bernigaud A., Gratton S., Lenti F., Simon E., Sohab O.: Lp-norm regularization in
variation data assimilation, Q.J.R. Meteorol. Soc., 142, 2021.

▶ Bernigaud A., Gratton S., Simon E.: A nonlinear conjugate gradient in dual space
for Lp-norm regularized nonlinear least squares with application in data
assimilation, Numer. Algor., 2023.

▶ Freitag M., Nichols N., Budd C.: L1-regularization for ill-posed problems in
variational data assimilation, Proc. Appl. Math. Mech., 10, 2010.

▶ Freitag M., Nichols N., Budd C.: Resolution of sharp fronts in the presence of
model error in variational data assimilation, Q.J.R. Meteorol. Soc., 139, 2013.

▶ Schuster T., Kaltenbacher B., Hofmann B., Kazimierski K.S.: Regularization
methods in Banach spaces, Radon series on Computational and Applied
Mathematics, 2012.

Numerical experiments

▶ A 2D shallow water model:
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▶ A 6-hours Assimilation window.
▶ Observations: h, every 10 time step and 4% of the spatial domain

(random selection).
▶ Diffusion-based modeling of B and diagonal R.
▶ True initial condition and background:

Choice of λ and p: heat map of RMSE
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▶ Arbitrary choice: p = 1.1 et λ = 1.

Decay of the cost function and RMSE in the
initial condition

▶Gradient in dual space (GDD, blue) VS NLCGDS (red)

Cost function RMSE at t=0

▶ Fastest decay of the cost function and RMSE with NLCGDS.

Optimized initial condition (30 iterations)

▶ Better representation of the quasi-sparse structure with NLCGDS.

Conclusion and perspectives
▶ Conclusion:
▷ Benefits of the Lp-norm regularization for promoting sparsity.
▷ Algorithmic developments for the efficient resolution of Lp-norm

regularized least square.
▶ Perspectives:
▷ Numerical experiments in a realistic configuration.
▷ Development of ensemble-based algorithms.
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