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Detecting detrimental observation influenceAnalyzing the influence of observations on different variables Optimizing localization

Table: Absolute PAI contributions in % summed over all profiles

Validation of the Method

Comparison between computed PAI and 
difference between background and 
analysis from single obs experiment with 
satellite observations only

Horizontal localization length scale 25 km

No vertical localization

a) Temperature increment (∆T),
    horizontal slice at ~ 500 hPa
b) Same as a) but increment from
    LETKF output
c) Vertical profile at obs location
    (red dot in a) and b))
d) Horizontal cut through the
    domain (grey dotted line in a) and b))

Figure: Vertical profile example of  PAI contributions from all 
observations. The sum equals the total increment.

Figure:      for temperature, individual dots are associated with 
individual radiosonde measurements from 29 profiles.

The computation of PAI can be used to approximate 
the influence an observation would have when 
applying different localization length scales. 
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Data Assimilation Experiments

COSMO-KENDA setup:

Assimilation of radiosonde (RASO) and 
colocated satellite observations (VIS, 0.6 μm 
wavelength)

In total 29 colocated observation locations and 
~ 773 radiosonde measurements per variable

One analysis step, no inflation

Horizontal localization radius such that every 
grid point is influenced by only one observation, 
i.e. multiple assimilation experiments in one 
model run

      defines the error reduction with respect to radiosonde 
observations. We consider only the contribution of assimilated 
satellite observations and compare the error reduction in a 
single obs experiment (VIS) and a combined experiment 
(RASO+VIS).

The error is defined as: with

The error reduction is:

satellite pulls towards the radiosonde observation

satellite pulls away from the radiosonde observation

Partial Analysis Increments
The analysis is a statistical combination of the background state and the observations.

The influence of the observations on the analysis is determined through the increment.

Variable Description Dimension

xa Analysis model state vector n x 1

xb Background model state vector n x 1

K Kalman Gain n x p

yo Observation vector p x 1

H Observation operator p x n

The Kalman Gain can be expressed using only available LETKF model output.

It is not directly computed in the LETKF.

Using any subset of observations, i.e. only certain columns of K and rows of the innovation 
vector (yo - Hxb) allows for computing the partial analysis increments. 

Ya is not available at every model grid point, however we demonstrate that this only introduces 
minor errors up to the localization length scale.

Variable Description Dimension

Xa Analysis perturbation matrix n x k

Ya Model equivalent of Xa p x k

K Kalman Gain n x p

Rloc p x p

k Ensemble size 1

Observation error covariance matrix
localized with Gaspari-Cohn function

non-localized

localized

retrospectively 
localized using PAI

Figure: Vertical profile of 
satellite PAI from three 
different experiments.

Determine the optimal parameters by iteratively minimizing 
a cost function of the form:

Figure: Minimum of the cost function indicated by red dot. 
J = 1 indicates cost in non-localized experiment.

Gaspari-Cohn function
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How to use partial analysis increments in an LETKF data assimilation system
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TL;DR

Local Ensemble Transform Kalman Filters (LETKFs) allow us to 
explicitly calculate the Kalman Gain matrix and by this the contribution 
of every observation to the analysis field (partial analysis increment 
(PAI)).
 
We propose their use to optimize LETKF systems in particular with 
respect to satellite data assimilation and vertical localization that 
constitute significant challenges.

Motivation

Local Ensemble 
Transform Kalman Filter

Short-Range

Forecast

AnalysisGoals of this project:
Development of a diagnostic tool to assess observation influence in 3D
Sensitivity studies of different observation types and assimilation settings

For convective-scale data assimilation there is potentially a vast amount of information 
available from ground-based remote-sensing instruments, various satellites and also 
human and economic activities e.g. smartphones, weather cameras, renewable energy 
production. 

The assimilation of such complex observations is non-trivial and requires better 
understanding of the processes and effects of the data assimilation system.  


