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Accounting for spatial scale dependency in B (in NEMOVAR*)

u Multiple (two) scale B model (Met Office; Mirouze et al. 2016)
§ Block-diagonal (uncorrelated) with respect to the separated scales.
§ Variances and length-scales are estimated by fitting a linear combination of 

Gaussian functions to samples of background error (Carneiro et al. 2021).

u Scale-dependent localization (SDL) (Buehner & Shlyaeva 2015)
§ Requires localizing an ensemble (sample) covariance matrix.
§ Cost increases with ensemble size and number of scales.

u Scale-dependent covariance model (SDM) (new)
§ Combines features of the Met Office B model and SDL.
§ Accounts for cross-covariances between different scales.
§ Inexpensive procedures for estimating scale-dependent B model parameters from 

ensembles.
§ Cheaper than SDL. 
§ Hybridizes naturally with SDL.

* Collaborative ocean DA software development between CERFACS, ECMWF, INRIA and Met Office
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u The ECMWF implementation of NEMOVAR for ORAS6/OCEAN6 defines (a 
single-scale) B from an Ensemble of Data Assimilations (EDA).

u The ensemble is used to define the error covariances of transformed
(assumed approximately uncorrelated) background variables.

u The balanced component is removed from the ensemble perturbation 
matrix:

u For SDL and SDM, a sequence of diffusion-based filters         with different 
length scales       (with                      ) are used to construct an augmented set 
of perturbations from small scale (small 𝑖) to large scale (large 𝑖) :

Scale-dependent ensemble perturba8ons

with
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u The filtered perturbations are rearranged into overlapping ranges of 
scales from large (small 𝑖) to small (large 𝑖):

u The original perturbation is recovered from the telescoping sum

u The sample error covariance matrix can be written as

Scale-dependent ensemble perturbations
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u With scale-dependent localization (SDL), we define

u With the scale-dependent covariance model (SDM), we define

u must be symmetric, positive semi-definite. We define

u We use the “square-root” of a diffusion operator to model the components:

Scale-dependent covariance modelling

and
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Scale-dependent filtering on the sphere using an implicit diffusion operator

Example with two separated scales

where                 in the example

Filtering kernel (Matérn like):

Spectral coefficients:

Filtering length-scale 
(Lindgren et al. 2011 definition):

(Weaver and Mirouze 2013)
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u Climatological statistics from an 11-member ensemble from ECMWF pre-
OCEAN6 config. (eORCA025), with spatial filtering (Ménétrier et al. 2015).

u Two ranges of scales where D2 = 3 x local horizontal resolution (≈ 85 km)

Scale-dependent variance estimation

and
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u Directional length-scale tensor   is estimated from the inverse of the 
local ensemble gradient tensor (Weaver et al. 2021), with spatial filtering 
(Michel et al. 2016):

Scale-dependent correlation (diffusion) tensor estimation

and

100 km1000 km100 km 10 km

ISDA 2023, 16-20 October 2023, Bologna

where



u requires         applications of the implicit diffusion operator, which we 
solve approximately using the Chebyshev Iteration (Weaver et al. 2016; 2018).

1) For the small spatial scales, the conditioning of the implicit diffusion matrix 
is improved since the length-scales are short.

Ex:  No. of Chebyshev solver iterations for the small-scale term with 2 scales = 5
cf. No. of Chebyshev solver iterations with 1 scale = 23

2) For the large spatial scales, the diffusion operator can be applied on a 
coarse grid since the length-scales are long.

Ex:  No. of Cheby. solver iterations for the large-scale term on coarse grid (=1/2 fine) = 21   
cf. No. of Cheby. solver iterations for the large-scale term on fine grid = 43

u So the cost with        = 2 can be made comparable to the cost with        = 1 !

Computational cost
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u Normalization is required to isolate the total standard deviations:

u The normalization factors are                                               , which requires 
estimating the diagonal elements of                    
§ When            , they are all equal to 1 if the diffusion operator is properly normalized, 

which can be done using a randomization algorithm.
§ When            , they are not equal to 1 and not explicitly known. They can be 

estimated, however, by reworking the randomization algorithm.

u Hybrid scale-dependent standard deviations:

u Hybrid total standard deviations:   

Normalization and hybrid variances
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where



Amplitude of the cross-scale covariance term Cij, 𝑖 ≠ 𝑗
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u Example of T-T correla`ons at 1 metre depth

Correlation structures
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u Time-series of the temperature RMS (obs – bkg) averaged over 0 – 1000 m

Cycled 3D-Var DA experiments using the ECMWF ORAS6 framework
with a climatological B
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u Time-series of the salinity RMS (obs – bkg) averaged over 0 – 1000 m

Cycled 3D-Var DA experiments using the ECMWF ORAS6 framework
with a climatological B
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u RMS (obs – bkg) difference (2-scale B minus 1-scale B) for temperature & salinity

Cycled 3D-Var DA experiments using the ECMWF ORAS6 framework
with a climatological B
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u Time-series of the sea surface height SDV (obs – bkg)

Cycled 3D-Var DA experiments using the ECMWF ORAS6 framework
with a climatological B
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u SDV (obs – bkg) difference (2-scale B minus 1-scale B) for sea surface height

Cycled 3D-Var DA experiments using the ECMWF ORAS6 framework
with a climatological B
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Current

Degradation



Summary and outlook

u SDM in NEMOVAR: separate an ensemble into a range of scales and model 
the same-scale and cross-scale covariances using a diffusion operator.
§ How many scales? Depends on model resolution and cost vs benefits of increasing Ns.
§ Vertical separation as well as horizontal separation?

u Objective and inexpensive methods can be used for estimating and filtering 
the scale-dependent B model parameters.
§ Little modification is required to estimation methods developed for a single scale formulation.

u First results with a climatological B are overall positive for temperature and 
salinity; mixed results for SSH (compared to one scale).
§ More diagnostics and understanding required.

u SDM (climatology) hybridizes naturally with SDL (flow-dependent).
§ Hybridization coefficients and localization length-scales can be estimated using BUMP (software 

developed by B. Ménétrier).
§ SDL and BUMP are already implemented in NEMOVAR.
§ Combining SDM, SDL and BUMP will be the subject of future work.
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