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Outline of this talk
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The SPX volatility surface as of 15-Feb-2023

Figure 1: The SPX volatility surface as of 15-Feb-2023.1

1
Data from OptionMetrics via WRDS.
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Remarks on Figure 1

Figure 1 is a slightly smoothed plot of estimated mid
volatilities, not a fit!

There were 48 expirations and 6,749 put/call option pairs with
non-zero bids as of the close on 15-Feb-2023.

Notice how smooth this volatility surface is!

Bumps or dips would be tradable.

Although the level and orientation of the volatility surface
changes over time, it is a stylized fact that its rough shape
stays very much the same.

The surface as of 15-Feb-2023 is typical.
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SPX volatility smiles as of 15-Feb-2023

Figure 2: SPX volatility smiles as of 15-Feb-2023.
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Interpreting a single smile

We could say that the volatility smile (at least in equity
markets) reflects two basic observations:

Volatility tends to increase when the underlying price falls,

hence the negative skew.

We don’t know in advance what realized volatility will be,

hence implied volatility is increasing in the wings.

It’s implicit in the above that more or less any model that is
consistent with these two observations will be able to fit one
given smile.

Fitting two or more smiles simultaneously is much harder.
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Term structure of at-the-money skew

Given one smile for a fixed expiration, little can be said about
the process generating it.

In contrast, the dependence of the smile on time to expiration
is intimately related to the underlying dynamics.

In particular model estimates of the term structure of ATM
volatility skew defined as

ψ(τ) :=
∂

∂k
σBS(k , τ)

∣∣∣∣
k=0

are very sensitive to the choice of volatility dynamics in a
stochastic volatility model.
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Term structure of SPX ATM skew as of 15-Feb-2023

Figure 3: Term structure of ATM skew as of 15-Feb-2023, with power law
fit τ−0.24 superimposed in red.
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Stochastic volatility models

A generic stochastic volatility model takes the form

dSt
St

=
√

Vt dZt

Vt =

∫ t

−∞
F (Ωs) dWs ,

where Vt dt = d 〈log S〉t , F is some function, and Ωt is the
natural filtration generated by Z and W .
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Fractional stochastic volatility models

Non-Markovian models of the form

Vt = V0 exp

{
η

∫ t

0

dWs

(t − s)γ
+ drift

}
were shown by Alòs et al. in [ALV07] and then by Fukasawa in
[Fuk11] to generate a short-dated ATM skew of the form

ψ(τ) ∼ τ−γ

with γ = 1
2 − H and 0 < H < 1

2 .

Such models, where the kernel decays as a power-law for small
times, are called rough volatility models.

The typical power-law behavior of the skew term structure for
short times is one of the motivations for rough volatility
models.
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Skew term structure is not always power-law

[GA23] show that a power-law fits the average skew term
structure poorly for very short dates.

[DDS23] show that skew term structure is typically a
combination of two power-laws.

We confirm in Figure 4, that the term structure of skew is not
always power-law.

On 27-Dec-2022, the skew term structure is not even
monotonic!

We further confirm in Figure 5 that the skew term structure
looks like a combination of two power-laws, at least on
15-Feb-2023, consistent with [DDS23].
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Skew term structure is not always power-law

Figure 4: ATM skew term structure on two different dates. On
27-Dec-2022, the skew term structure is not even monotonic!
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Log plot of skew term structure

Figure 5: The skew term structure on 15-Feb-2023 looks like a
superposition of two power-laws.
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Scaling of total variance

The rough SABR formula of [FG22] suggests that we should
have

w(k , τ)

w(0, τ)
≈ f

(
τ−γ

k

ΣBS(0)

)
.

Roughly speaking, total variance curves should scale as a
power-law.

Figure 6 does suggest close-to-power-law scaling, even in the
27-Dec-2022 case.
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Scaling of total variance

Figure 6: ATM skew term structure on two different dates. On
27-Dec-2022, the skew term structure is not even monotonic!
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Fractional stochastic volatility models

This simple scaling of volatility smiles suggests that rough
volatility models should be consistent with option prices.

Despite that the term structure of skew is not always
power-law.

Were the instantaneous variance to follow something like

Vt = V0 exp

{
η

∫ t

0

dWs

(t − s)γ
+ drift

}
,

the time series of logVt should also have simple scaling
properties.

Let’s check ...
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Power-law scaling of the historical volatility process

The Oxford-Man Institute of Quantitative Finance used to
make historical realized variance (RV) estimates freely
available.

Unfortunately, no longer. The last date in my dataset is
06/28/2022.

Using daily RV estimates as proxies for instantaneous variance,
we may investigate the time series properties of Vt empirically.
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History of SPX realized variance

Figure 7: (Log) realized kernel estimates of SPX realized variance.
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The smoothness of the volatility process

For q ≥ 0, we define the qth sample moment of differences of
log-volatility at a given lag ∆2:

m(q,∆) = 〈|log σt+∆ − log σt |q〉

For example

m(2,∆) =
〈

(log σt+∆ − log σt)
2
〉

is just the sample variance of differences in log-volatility at the
lag ∆.

2〈·〉 denotes the sample average.
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Scaling of m(q,∆) with lag ∆

Figure 8: logm(q,∆) as a function of log ∆, SPX.
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Scaling of ζq with q

Figure 9: Scaling of ζq with q.
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Monofractal scaling result

From the log-log plot Figure 8, we see that for each q,
m(q,∆) ∝ ∆ζq .

And from Figure 9 the monofractal scaling relationship

ζq = q H

with H ≈ 0.17.

Note also that our estimate of H is biased high because we
proxied instantaneous variance Vt with its average over each

day 1
T

∫ T

0
Vt dt, where T is one day.

On the other hand, the time series of realized variance is noisy
and this causes our estimate of H to be biased low.

It is easily checked that H is not a constant, but varies with
time.
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Universality?

In [GJR18], we compute daily realized variance estimates over
one hour windows for DAX and Bund futures contracts,
finding similar scaling relationships.

We have also checked that Gold and Crude Oil futures scale
similarly.

Although the increments (log σt+∆ − log σt) seem to be fatter
tailed than Gaussian.

In [BLP22] Bennedsen et al., estimate volatility time series for
more than five thousand individual US equities, finding rough
volatility in every case.
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A natural model of realized volatility

Distributions of differences in the log of realized volatility are
close to Gaussian.

This motivates us to model σt as a lognormal random variable.

Moreover, the scaling property of variance of RV differences
suggests the model:

log σt+∆ − log σt = ν
(
WH

t+∆ −WH
t

)
(1)

where WH is fractional Brownian motion.

If σ were continuous, distributions of logσ were really
Gaussian, and if H were constant, this model would be unique!

In [GJR18], we refer to a stationary version of (1) as the
RFSV (for Rough Fractional Stochastic Volatility) model.
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Fractional Brownian motion (fBm)

Fractional Brownian motion (fBm) {WH
t ; t ∈ R} is the unique

Gaussian process with mean zero and autocovariance function

E
[
WH

t WH
s

]
=

1

2

{
|t|2H + |s|2H − |t − s|2H

}
where H ∈ (0, 1) is called the Hurst index or parameter.

In particular, when H = 1/2, fBm is just Brownian motion.

If H > 1/2, increments are positively correlated.
If H < 1/2, increments are negatively correlated.
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More sophisticated estimators of H

Numerous authors have pointed out that the estimates of H
by linear regression in [GJR18] make sense only if estimation
error is not too high.

A semimartingale volatility process with substantial estimation
error would yield spuriously low estimates of H.
Some authors have even suggested that volatility may not be
rough!

Easily rejected by examining the magnitude of ν.

More sophisticated estimators of H include

The ACF estimator of [BLP22]
The Whittle estimator of [FT19]
The GMM estimator of [BCPV23]
The TDML estimator of [WXY223]

All of these authors conclude that volatility of SPX is indeed
rough.
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Graph of ACF-estimated H

Figure 10: Plot of ACF estimates of H using 61 day windows. H is not
constant!
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The forecast formula

In the RFSV model (1), logVt ≈ 2 νWH
t + C for some

constant C .

[NP00] show that WH
t+∆ is conditionally Gaussian with

conditional expectation

E[WH
t+∆|Ft ] =

cos(Hπ)

π
∆H+1/2

∫ t

−∞

WH
s

(t − s + ∆)(t − s)H+1/2
ds

and conditional variance

Var[WH
t+∆|Ft ] = c ∆2H .

where

c =
Γ(3/2− H)

Γ(H + 1/2) Γ(2− 2H)
.
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The forecast formula

Thus, we obtain

Variance forecast formula

EP [Vt+∆| Ft ] = exp
{
EP [ log(Vt+∆)| Ft ] + 2 c ν2∆2H

}
where

EP [ logVt+∆| Ft ]

=
cos(Hπ)

π
∆H+1/2

∫ t

−∞

logVs

(t − s + ∆)(t − s)H+1/2
ds.

[BLP22] confirm that this forecast outperforms the best
performing existing alternatives such as HAR, at least at daily
or higher timescales.
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Pricing under rough volatility

Once again, the data suggests the following model for volatility
under the real (or historical or physical) measure P:

log σt = νWH
t .

Let γ = 1
2 − H. We choose the Mandelbrot-Van Ness

representation of fractional Brownian motion WH as follows:

WH
t = CH

{∫ t

−∞

dW P
s

(t − s)γ
−
∫ 0

−∞

dW P
s

(−s)γ

}
where the choice

CH =

√
2H Γ(3/2− H)

Γ(H + 1/2) Γ(2− 2H)

ensures that

E
[
WH

t WH
s

]
=

1

2

{
t2H + s2H − |t − s|2H

}
.
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Pricing under rough volatility

Then

logVu − logVt

= 2 ν CH

{∫ u

t

1

(u − s)γ
dW P

s +

∫ t

−∞

[
1

(u − s)γ
− 1

(t − s)γ

]
dW P

s

}
=: 2 ν CH [Mt(u) + Zt(u)] . (2)

Note that EP [Mt(u)| Ft ] = 0 and Zt(u) is Ft-measurable.

To price options, it would seem that we would need to know
Ft , the entire history of the Brownian motion Ws for s < t!
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The variance process under P

Exponentiating (2), we get

Vu = Vt exp {2 ν CH Mt(u) + 2 ν CH Zt(u)}

= EP [Vu| Ft ] E
(

2 ν CH

∫ u

t

dW P
s

(u − s)γ

)
.

The conditional distribution of Vu depends on Ft only
through the variance forecasts EP [Vu| Ft ].

These variance forecasts depend explicitly on the history of the
variance process.
Rough volatility models are (in principle) path-dependent!

Rough volatility gives us a natural connection between P and
Q.

We can forecast the volatility surface using historical data!
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Pricing under Q

Our model under P reads:

Vu = EP [Vu| Ft ] E
(
η̃

∫ u

t

dW P
s

(u − s)γ

)
, (3)

where η̃ := 2 ν CH . Consider some general change of measure

dW P
s = dWQ

s + λs ds,

where {λs : s > t} has a natural interpretation as the price of
volatility risk. We may then rewrite (3) as

Vu = EP [Vu| Ft ] E
(
η̃

∫ u

t

dWQ
s

(u − s)γ

)
exp

{
η̃

∫ u

t

λs
(u − s)γ

ds

}
.

(4)

Although the conditional distribution of Vu under P is
lognormal, it will not be lognormal in general under Q.

The upward sloping smile in VIX options means λs cannot be
deterministic in this picture.
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The rough Bergomi model

Let’s nevertheless consider the simplest change of measure

dW P
s = dWQ

s + λ(s) ds,

where λ(s) is a deterministic function of s. Then from (4), we
would have

Vu = EP [Vu| Ft ] E
(
η̃

∫ u

t

dWQ
s

(u − s)γ

)
exp

{
η̃

∫ u

t

λs
(u − s)γ

ds

}
= ξt(u) E

(
η̃

∫ u

t

dWQ
s

(u − s)γ

)
.

where the forward variances ξt(u) = EQ [Vu| Ft ] are (at least in
principle) tradable and observed in the market.

ξt(u) is the product of two terms:
EP [Vu| Ft ] which depends on the historical path {Ws , s < t}
of the Brownian motion
a term which depends on the price of risk λ(s).
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Features of the rough Bergomi model

The rough Bergomi model is a non-Markovian generalization
of the Bergomi model:

E [Vu| Ft ] 6= E[Vu|Vt ].

The rough Bergomi model is Markovian in the
(infinite-dimensional) state vector EQ [Vu| Ft ] = ξt(u).

From [ALV07] and [Fuk11], we expect the rough Bergomi
model to generate a realistic term structure of ATM volatility
skew.

It does!
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The rough Heston model

Rosenbaum et al. [EFR16] consider a simple Hawkes process
model of order flow with the following properties:

Reflecting the high degree of endogeneity of the market, the L1

norm of the kernel matrix is close to one (nearly unstable).
No drift in the price process imposes a relationship between
buy and sell kernels.
Liquidity asymmetry: The average impact of a sell order is
greater than the impact of a buy order.
Splitting of metaorders motivates power-law decay of the
Hawkes kernels ϕ(τ) ∼ τ−(1+α) (empirically α ≈ 0.6).

In a tour de force, El Euch and Rosenbaum [ER19] compute
an expression for the characteristic function of the rough
Heston model.

In terms of the solution of a Riccati fractional ODE.
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In forward variance form

Let α = H + 1
2 .

The rough Bergomi model reads

dξt(u) = κ(u − t) ξt(u) dWt ,

with kernel κ(τ) = η̃ τα−1.

The rough Heston model reads

dξt(u) = κ(u − t)
√
Vt dWt ,

with kernel κ(τ) = ν τα−1 Eα,α(−λτα), where Eα,α(·) is the
Mittag-Leffler function.



Stylized facts Realized volatility Modeling under P Modeling under Q Numerics Conclusion

A generalization

[GKR19] show how this can be generalized by defining the
class of affine forward variance (AFV) models.

We show that a one-factor stochastic volatility model is affine
if and only if the volatility process is square-root.
For each such model, one can compute the characteristic
function by solving a Riccati?Volterra equation.
Hawkes processes are the discrete time analogs of square-root
stochastic volatility processes.

Moreover, we define the class of affine forward intensity (AFI)
models.

Each such model looks like Mathieu’s rough Heston model but
with a different Hawkes kernel.
Each such model has a rough Heston-like stochastic volatility
model as a limit if and only if the Hawkes kernel is nearly
unstable.
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The quadratic rough Heston model

Though the rough Heston model has a nice microstructural
justification, as for the classical Heston model, its dynamics
are not reasonable.

At-the-money skew ψ(τ) decreases with at-the-money
volatility.
VIX smiles are downward-sloping.

Lognormal dynamics are more reasonable.

Inspired by [BDB19, DJR19], [GJR20] proposed the quadratic
rough Heston model.

Because it is roughly speaking “the square” of a Heston
process, the QR Heston process is roughly lognormal.
The QR Heston model is explicitly path-dependent: Variance is
a weighted function of the price path.
Moreover, it generates upward-sloping VIX smiles!
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The stock price process

The observed anticorrelation between price moves and
volatility moves may be modeled naturally by anticorrelating
the Brownian motion W that drives the volatility process with
the Brownian motion driving the price process.

Thus
dSt
St

=
√

Vt dZt

with
dZt = ρ dWt +

√
1− ρ2 dW⊥

t

where ρ is the correlation between volatility moves and price
moves.
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Hybrid simulation of rough volatility models

In [BFG16], we simulate the rough Bergomi model by
generating paths of W̃ and Z with the correct joint marginals
using Cholesky decomposition.

This is very slow!

The rough Bergomi variance process is a special case of a
Brownian Semistationary (BSS) process.

In [BLP17], Bennedsen et al. show how to simulate such
processes more efficiently.

Their hybrid BSS scheme is much more efficient than the exact
simulation described above.
An even more efficient version of the hybrid scheme (with
variance reduction) is presented in [MP18].
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Idea of the hybrid scheme

In the affine algorithm of [Gat22],

Vn = ξn +
n∑

k=1

∫ k∆

(k−1)∆
κ(n∆− s)

√
Vs dWs =: ξ̂n + Un,

where the Fn−1-adapted variable ξ̂n is given by

ξ̂n = E [Vn| Fn−1] = ξn +
n−1∑
k=1

∫ k∆

(k−1)∆
κ(n∆− s)

√
Vs dWs

≈ ξn +
n−1∑
k=1

κ(n∆− s)χk , (5)

and the
χk =

∫ k∆

(k−1)∆

√
Vs dWs ,

are the kth increments of the log-stock price process.
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The martingale increment Un given by

Un =

∫ n∆

(n−1)∆
κ(n∆− s)

√
Vs dWs ,

is simulated such that its variance and also covariance with
the χk , k < n are well-approximated.

Hence the terminology hybrid scheme.

The convolution term
∑n−1

k=1 κ(n∆− s)χk in (5) directly
captures the non-Markovianity of the rough Heston model.

Increasing complexity and slowing down computation.

In the rough Bergomi model, to which the hybrid scheme was
first applied [BLP17], the equivalent convolution can be
speeded up using FFT.
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Markovian approximations

[AE19] show how to approximate the power-law kernel by a
sum of exponential kernels.

Many Markovian simulations are required to accurately
approximate a rough volatility model, so simulation is slow.
On the other hand, as pointed out in [Abi19], lower order
approximations may themselves be considered models that
display rough-like behavior over a large range of timescales.

The idea is

τα−1 =
1

Γ(1− α)

∫
R+

e−κ τ
dκ

κα
≈

n∑
i=1

wi e
−κi τ .

[BB23a, BB23b] substantially improve on [AE19] by
employing geometric grid spacing and Gaussian quadrature.

According to the authors, their 7-point approximation does
better than a 1024 point [AE19]-style approximation!
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The rough Heston model

The rough Heston model with Mittag-Leffler kernel is
particularly tractable.

Its characteristic function is expressed as the solution of a
fractional ODE which can be solved numerically using:

The Adams scheme [DFF04]
The HQE (hybrid) scheme [Gat22]
Markovian approximations

Alternatively, the rational approximations of [GR19, GR24] are
very accurate.

These rational approximations are a large factor faster than
numerical methods, enabling fast calibration to the volatility
surface.

The rough Heston solution is thus a perfect benchmark for
numerical algorithms.
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What’s next?

The skew-stickiness ratio (SSR)

We need to explain why empirically observed skew-stickiness is
so much lower than that generated from stochastic volatility
models.

Better numerical techniques?

Maybe we can combine insights from the (path-dependent)
hybrid scheme and state-of-the-art Markovian approximation?

Better fitting but tractable rough volatility models?

That is probably expecting too much!

Economic rational for rough volatility?

We already have some understanding of how rough dynamics
can be generated from market microstructure models.
Maybe there is a more fundamental economic rationale?
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Postscript

From [GJR18]:

It is of course plausible that other models are compatible
with many of our observations. In fact, there are probably
many ways to design a process so that most of our empir-
ical results are reproduced (for example estimation errors
when estimating volatility can be quite significant for some
models, leading to downward biases in the measurement
of the smoothness). However, what we show here is that
we cannot find any evidence against the RFSV model. In
statistical terms, the null hypothesis that the data gener-
ating process of the volatility is a RFSV model cannot be
rejected based on our analysis.
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From the preface of [BFFGJR23]:

... any viable model describing the dynamics of volatility
should exhibit a close resemblance to rough volatility.

From [Fuk23]:

The pathwise roughness of volatility itself is, however, only
secondary; volatility is only a hypothetical latent quantity
in a diffusive scale, and its realization cannot be identified
from finite data. Its roughness is a result of the distri-
butional property of local self-similarity under a Brownian
semimartingale framework. In this sense, the statement
“volatility is rough” seems misleading and, indeed, has in-
voked some misunderstanding and confusion in the math-
ematical finance community.
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From [Fuk23] again:

A relevant scientific question is why volatility is rough (or
more precisely, why the distributions of asset prices in the
daily time scale have such universal properties that are
well-explained by rough volatility). There are several stud-
ies that connect rough volatility and market microstructure
dynamics. An economic reasoning is still absent. Research
in this direction would require a deeper understanding of
stochastic processes.
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Summary

Approximate power-law scaling of volatility smiles suggests a
scaling relationship for instantaneous variance.

This leads us to uncover a remarkable monofractal scaling
relationship in historical volatility which now appears to be
universal.

The rough volatility paradigm.

A natural non-Markovian (path-dependent) stochastic
volatility model under P then follows.

The resulting volatility forecast beats existing alternatives.

Rough volatility models fit the observed volatility surface
remarkably well with very few parameters.

Rough volatility models offer consistent modeling of historical
and implied volatility.
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Further reading ...
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