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Noncommutative differential geometry

Starting point: study a geometric object via an algebra of
“regular” functions over it (e.g. C>*(M), O(M), k[z1,...,z,]/1).
Main idea: the algebraic object becomes the focus of study, it is
generalised and interpreted as the algebraic dual of a more general
notion of space.
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arbitrary unital associative algebra A. If A is commutative, then
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Noncommutative differential geometry

Starting point: study a geometric object via an algebra of
“regular” functions over it (e.g. C*(M), O(M), k[z1,...,z,]/I).
Main idea: the algebraic object becomes the focus of study, it is
generalised and interpreted as the algebraic dual of a more general
notion of space.

We want to generalise the commutative R-algebra C*°(M) to an
arbitrary unital associative algebra A. If A is commutative, then
constructions should reproduce classical geometry.

Geometry Algebra NCDG | Structure
R (or C) R (or C) k comm. unital ring
M C>®(M) A unital assoc. k-algebra
E v.b. I'E) E f.g.p. left A-module
E—F |I(E)—TI(F) | E— F | left A-linear map

Useful categories: AFGP C 4Proj C 4Flat C 4Mod, Mody4.
O
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In order to describe the differential structure, we equip A with a
generalised notion of exterior algebra over it.

Definition (Exterior algebra over A)

Associative graded algebra (23, \) with QY = A, endowed with a
differential, i.e. a k-linear map d: 2] — Qg“ such that:

e d2=0:
o dlaAB)=(da)AB+ (=1)"a A (dB) fora € QF, B € Qi
o A and dA generate Q) via A.

Examples:
e de Rham complex (Q2*(M), A, d);

e universal exterior algebra (Q0%,d,, ®4).
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In particular, for the first grade (universal first order diff. calculus):
Ql =ker(-: A® A — A)
with differential

dy: A — QL dy(a) =1®a—a®1.
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In particular, for the first grade (universal first order diff. calculus):
Ql =ker(-: A® A — A)
with differential
dy: A — QL dy(a) =1®a—a®1.
Universal property: given an exterior algebra €23 on A, there exists
a unique surjective map
compatible with the algebra structure: grading, d, A.

Explicitly, 3=, a; ® b; € QL is mapped to Y_; a;db; € Q).
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Jet bundles
Given a vector bundle £ — M, the associated n-jet bundle

J"E — M represents the bundle of n-th order approximations of
sections of E (equivalence classes up to n-th order contact).



Classical jet functors
©000

Jet bundles

Given a vector bundle £ — M, the associated n-jet bundle

J"E — M represents the bundle of n-th order approximations of
sections of E (equivalence classes up to n-th order contact).
They provide:

@ an intrinsic notion of “Taylor approximation”;
@ a characterisation of differential operators;

@ an intrinsic definition of differential equation;
o

a tool for a theory of differential equations.
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Jet bundles come equipped with:
e n-jet prolongation (R-linear) map Vn >0

j':T'(E) —T'(J"E), o+— [o]";
e jet projections (vector bundle maps) Vn > m >0

v J"E — JTE, o]y — [o]7".

n
p
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Jet bundles come equipped with:
e n-jet prolongation (R-linear) map Vn >0

j':T'(E) —T'(J"E), o+— [o]";
e jet projections (vector bundle maps) Vn > m >0
v J"E — JTE, o]y — [o],"

This construction is functorial: ¢: £ — F gives

J': J'E — J"F, [o], = [¢ o o]y,
and the following are natural transformations
J":id ,Moa —> Lo J™ ™ Jr — J7
such that
M o b = g atMo g = ™
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Aim: to find a notion of jet bundle for noncommutative geometry.
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How? we use a property of jet bundles: they fit in the following
short exact sequence of vector bundle (n-jet s.es.)

0—s S"E —s J"E 2L -l o,
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Aim: to find a notion of jet bundle for noncommutative geometry.
How? we use a property of jet bundles: they fit in the following
short exact sequence of vector bundle (n-jet s.es.)

0—s S"E —s J"E 2L -l o,

Taking global sections we obtain the following short exact
sequence of finitely generated projective C°°(M )-modules
(equivalent by Serre-Swann)

0 — (S"E) — D(J"E) ™% pgn=1E) — 0.
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Given an exterior algebra 25 over A, we need to find functors
Sy, Ji: aAMod — aMod and natural transformations

vy Sy — Jg, " Ty — I
fitting in the following short exact sequence

Ta

n 1
0 R Y/ Jit——0.

Furthermore, we want a k-linear natural transformation
Jo +id ,Mod — J} such that

n,m mh _ _nh n,m mo__ M
Tq OTg =Tgq Tg  ©Jd =Jd -
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Quantum symmetric forms

In the classical case, the C*°(M)-module of differential forms with
values in a bundle E can be seen as Q°(M) ®¢eo(ar) ['(E).
So, given an exterior algebra 25 over A, we can define the functors
Q5: aAMod — 4Mod Er— Qi®4E;
Q: aAMod — 4Mod Er— Qp®4E.
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Quantum symmetric forms

In the classical case, the C*°(M)-module of differential forms with
values in a bundle E can be seen as Q°(M) ®¢eo(ar) ['(E).
So, given an exterior algebra 25 over A, we can define the functors

Q5: aAMod — 4Mod Er— Qi®4E;

Q0 sAMod — sMod Er— Qp®4E.
We define the functors

9 = QF = id ;od Si=Qq=Q®1~.

For n > 1, the functor of quantum symmetric forms S} is
defined by induction as the kernel of the following composition

chl(L'r;\,fl) /\S7L72

1 n—1 1 1 n—2 d 2 n—2

and (12 S7 — Qlo Sg_l is the inclusion.
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The following lemma shows other equivalent descriptions of S7;.

Lemma 1

If chi and Q?i are flat in Mod, for all n > 0, the following
subfunctors of the tensor algebra T} := (21)®4™ coincide
o STL,.
n—2 .
Q@ Ni_;ker (Tf/\T;_k_z),
Q@ n>2 ker (Té{:(/\h)Tn—k—h), where Np,: TC? S Qh,'
0<k<n—h @
@ (Shory=)n (Tp7*oSk) for 0 < h,k <n such that
h+k>n.
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Spencer cohomology

For all k,h > 0, consider the functor Q% o S%, and define §"* as

(=1)*AG

k h Z(L}AL) k 1 h—1 3271 k+1 h—1
_— _ s
QdoSd QdonoSd Qd oSd

(Sh’k

We get a complex in the category of functors of type
AMOd — AMOd.

0*>Sd Ql Sn15 QQ Sn26 Q3 Sg—?)'“

Definition (Spencer cohomology)

We call this the Spencer d-complex, its cohomology the Spencer
cohomology, and we denote the cohomology at Qfl o SZIL by HMF.



Universal 1-jet module

We start from the simplest case by computing J.FE for E = A
(classically A = C>°(M) 2 T'(M x R)).
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Universal 1-jet module

We start from the simplest case by computing J.FE for E = A
(classically A = C>°(M) 2 T'(M x R)).

Since S = QL = ker(-) C A® A, we have a natural way of
building the 1-jet short exact sequence, that is

0—Q —AA—A—0.



Universal 1-jet module

We start from the simplest case by computing J.FE for E = A
(classically A = C>°(M) 2 T'(M x R)).

Since S = QL = ker(-) C A® A, we have a natural way of
building the 1-jet short exact sequence, that is

0—Q —AA—A—0.

We thus define JLA := A ® A (free 1-dim. A-bimodule), where
the projection m10: J1A — A is the algebra multiplication.

We take as universal prolongation jl: a — 1 ® a, which splits the
sequence in Mod 4.
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0 Ql

u

J&A::A@)AT»A%O
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0 Q! JIA=A®A —— A—— 0
1.0
0 Qlli JC%A d A 0
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0 Ol JpA=AQA —5 A —— 0

Ty
[ H
1,0

0 0} JiAa—T 4 0
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0 Ol JpA=AQA —5 A —— 0

T
lpd J/ﬁd H
1,0

0 0} JiAa—T 4 0




NC Jet functors
0®00000

Ny ker(Pa) 0
0 01 JIA=A®A — A —— 0
Pd Pa H
7r1,0
d
0 Ql JiA T 0
0 coker(py) 0
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0 QL JiA=AQA — A ——0
Pr P H
1
0 Qb JIA 4 A 0
0 coker(pg) 0 0
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0 Ny —=— ker(py) —— 0
0 Qr JpA=AQ@A — A —— 0
Pd Pd ’ H
7r1,0
d
0 Q JiA T 0
0 0 0 0
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0 Q) JiAi= AR A —5— A 0
b b
0 Qb JJA=(A® A)/Ng —2» A —— 0
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0 —— Ny Ny ———— 0
j j il l
T ‘\\\ ~
0 Q, JPA =A@ A —— A 0
- R
0 Qb JJA=(A® A)/Ng —2» A —— 0
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j j i l
KT N
0 Q) JiA= AR A —5— A 0
|~ CHE
0 Qb JIA=(A® A)/Ng ——> A —— 0
(\\_“///
Ja

We thus define J1A := A® A/Ny,

75([a ® b)) := ab, ja(a) == [1®a.
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0 —— Ny Ny ———— 0
j j il l
T ‘\\\ ~
0 Q) JiA= AR A —5— A 0
- TR
0 Qb JIA=(A® A)/Ng ——> A —— 0
Ja

We thus define J1A := A® A/Ny,
W;’O([a ® b)) := ab, jia) =1 ®a.

In order to obtain the short exact sequence for all E in 4Mod we
can apply the functor — ®4 E: 4Mod — Mod.
The 1-jet sequence splits in Mod 4, so it remains exact.
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Nonholonomic jet functors

Definition
We term the functor

J(gn) = (Jc})cm = Jéo---oJé = (JéA)(@An ®4 —: aMod — g4Mod

the nonholonomic n-jet functor. The following composition is
called the nonholonomic n-jet prolongation.

5 = ] yojt

(n)
d, 7" ° ‘

1 ol g
Ojd“]éojdld%Jd

For all 1 < m < n, we have the natural epimorphisms

( 1;m) _ (n—m) 1,0 . 7(n) (n=1)
s = Wd,Jé’”*l Jy — Jy )
which will be called the nonholonomic n-jet projections.



2-jet functor

We build the (holonomic) 2-jet module with the aim that the
following sequence is exact

2

Ld,E s

2,1
d,E

0 S2E JIE JIE —— 0



2-jet functor

We build the (holonomic) 2-jet module with the aim that the
following sequence is exact

2

Ld,E s

2,1
0 S2E J3E 2% JIE —— 0

0 —— QUIIE) —— JPE ——» JIE —— 0
Ld,JéE ﬂd:JéE



2-jet functor
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following sequence is exact

12 71'2’1
0 S22 5 2B 22 JIE —— 0
2o s | | |
0 —— QYJIE) 5— JPE - JIE —— 0
d,JéE ﬂd,J;E



2-jet functor

We build the (holonomic) 2-jet module with the aim that the
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We assume Q) flat in Mod 4.
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2-jet functor

We build the (holonomic) 2-jet module with the aim that the
following sequence is exact

12 71'2’1
0 S22 5 2B 22 JIE —— 0
%o s | [1e |
0 —— QUIIE) —— JPE ——» JIE —— 0
d,JéE 7rd:JlE

We assume Q}i flat in Mod 4. As for the classical case, we expect
the jet prolongation to agree with the nonholonomic one, i.e.

2 2 (2 _ .1 5|

lip©Jae = Jag = Jak °Jde:
Under these conditions, jc(lz)(E) +S%2E C Jf)E satisfies the 2-jet
short exact sequence.



We can describe JdQE implicitly as the kernel of a bilinear map
Dp: JPE — () x Q2)(E),

where (2} x Q2)(F) = (Q} x Q%) @4 E.

As a right A-module, Q) x Q2 = QL & O2, but as an A-bimodule,

it comes equipped with a non-trivial left action

frladw)=fa+df Na+ fu, VfcA acQl wel

Explicitly, we have

Dy: JVE (QL x Q2)(E)

[a®bl @4 [c®e] —— (ad(bc) ®4 e,da N d(bc) @4 €) .
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Definition (Holonomic n-jet functor)

Let A be a k-algebra endowed with an exterior algebra ) over it.
We define J} as the kernel of the natural transformation

l(nfl) Djn72
Jio it =5 JjoJjo JiTt —— (g x QF) o Iy,

where we denote the natural inclusion by I%: J§ — J}o J} =t
We call J} the (holonomic) n-jet functor.

It is natural to consider the following composition

Ly = I3 0 @) 00 TNy 0 1 33 — I

In general, ¢» is not injective (as has been noted also in the
setting of synthetic differential geometry).
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We define the (holonomic) n-jet projection as the natural
transformation 7"~ ! obtained as the composition
1,0

u n—1

ln
n d 1 n—1 7d n—1
Jj —— JyolJ; —— J; .

More generally, by composing them, we get, for all 0 < m < n,
nm . _m+1lm m+2m—+1 n,n—1

= o, o---om; T Jg — I

The natural map ¢} is defined by induction, for n > 2 as the
unique morphism that commutes in the following diagram

QYey™h

1 n—1 d n—1
Sd ‘—> Q S Qd Jd
|
1
B de,J;;*l
‘yn lZiL TL 1
Jq Jd ©
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Theorem (Holonomic jet exact sequence)

Let A be a k-algebra endowed with an exterior algebra § such
that ), Q2, and 0 are flat in Moda. Forn > 1, if the Spencer
cohomology H™?2 vanishes, for all 1 < m < n — 2, then the
following sequence is exact,

n,n—1

L ™
0 Sg( d Jg d J;Lfl Hn—2,2‘

Therefore, if H"~2? = 0 we obtain a short exact sequence

n,n—1

0 spdygnld gl 0.
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Theorem (Stability)
Let A be a k-algebra endowed with an exterior algebra §1j.
Q IfQ} isin aFlat (resp. 4Proj, AFGP), then Jc(l") preserves
aFlat (resp. 4Proj, 4FGP);

Q IfQ, Qz, and Qz are flat in Mod 4, H™? vanishes and St is
in aFlat (resp. aAProj, sAFGP), for all 1 < m < n, then J}
preserves sFlat (resp. 4Proj, 4FGP).

These functors are reasonable, as they map bundles into bundles.
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Theorem (Classical correspondence)

Let A = C>(M) for a smooth manifold M, let Q2 = Q°*(M)
equipped with the de Rham differential d, and let E be the space
of smooth sections of a vector bundle. Then the C*°(M )-modules
of sections of the associated classical nonholonomic and holonomic
n-jet bundles are isomorphic to J\" E and J7E in xMod,
respectively, and the prolongation maps and jet projections are
compatible with the isomorphisms.
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Definition (Differential operators)

Let E, F € 4Mod. A k-linear map A: E — F' is called a linear
differential operator of order at most n. with respect to the exterior
algebra Q2 if there exists an A-module map Ace sHom(J}E, F)
such that the following diagram commutes:

JNE

y’:ﬁ “A
A Y
F——— F

If n is minimal, we say that A is of order n.

@ stability under sum and composition;
@ what should be a differential operator is a differential operator
(connections, d, partial derivatives, Pp = Dp Oj}1E);
d

@ new tool to build exterior algebras (terminal calculi).



Thank you!
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