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Noncommutative differential geometry
Starting point: study a geometric object via an algebra of
“regular” functions over it (e.g. C∞(M), O(M), k[x1, . . . , xn]/I).
Main idea: the algebraic object becomes the focus of study, it is
generalised and interpreted as the algebraic dual of a more general
notion of space.

We want to generalise the commutative R-algebra C∞(M) to an
arbitrary unital associative algebra A. If A is commutative, then
constructions should reproduce classical geometry.
Geometry Algebra NCDG Structure
R (or C) R (or C) k comm. unital ring

M C∞(M) A unital assoc. k-algebra
E v.b. Γ(E) E f.g.p. left A-module
E → F Γ(E)→ Γ(F ) E → F left A-linear map

Useful categories: AFGP ⊆ AProj ⊆ AFlat ⊆ AMod, ModA.
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In order to describe the differential structure, we equip A with a
generalised notion of exterior algebra over it.

Definition (Exterior algebra over A)
Associative graded algebra (Ω•d,∧) with Ω0

d = A, endowed with a
differential, i.e. a k-linear map d : Ωn

d → Ωn+1
d such that:

d2 = 0;
d(α ∧ β) = (dα) ∧ β + (−1)nα ∧ (dβ) for α ∈ Ωn

d , β ∈ Ωh
d ;

A and dA generate Ω•d via ∧.

Examples:
de Rham complex (Ω•(M),∧, d);
universal exterior algebra (Ω•u, du,⊗A).
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In particular, for the first grade (universal first order diff. calculus):

Ω1
u = ker (· : A⊗A −→ A)

with differential

du : A −→ Ω1
u, du(a) = 1⊗ a− a⊗ 1.

Universal property: given an exterior algebra Ω•d on A, there exists
a unique surjective map

Ω•u −� Ω•d.

compatible with the algebra structure: grading, d, ∧.
Explicitly,

∑
i ai ⊗ bi ∈ Ω1

u is mapped to
∑
i aidbi ∈ Ω1

d.
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Jet bundles

Given a vector bundle E →M , the associated n-jet bundle
JnE →M represents the bundle of n-th order approximations of
sections of E (equivalence classes up to n-th order contact).

They provide:
an intrinsic notion of “Taylor approximation”;
a characterisation of differential operators;
an intrinsic definition of differential equation;
a tool for a theory of differential equations.
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Jet bundles come equipped with:
n-jet prolongation (R-linear) map ∀n ≥ 0

jn : Γ(E) ↪−→ Γ(JnE), σ 7−→ [σ]n;

jet projections (vector bundle maps) ∀n ≥ m ≥ 0

πn,m : JnE −� JmE, [σ]np 7−→ [σ]mp .

This construction is functorial: φ : E → F gives

Jnφ : JnE −→ JnF, [σ]np 7−→ [φ ◦ σ]np ,

and the following are natural transformations

jn : id
AMod −→ Γ ◦ Jn πn,m : Jn −→ Jm,

such that

πn,m ◦ πm,h = πn,h, πn,m ◦ jn = jm.

Masaryk University, Brno



NC differential geometry Classical jet functors Quantum symmetric forms NC Jet functors Results

Jet bundles come equipped with:
n-jet prolongation (R-linear) map ∀n ≥ 0

jn : Γ(E) ↪−→ Γ(JnE), σ 7−→ [σ]n;

jet projections (vector bundle maps) ∀n ≥ m ≥ 0

πn,m : JnE −� JmE, [σ]np 7−→ [σ]mp .

This construction is functorial: φ : E → F gives

Jnφ : JnE −→ JnF, [σ]np 7−→ [φ ◦ σ]np ,

and the following are natural transformations

jn : id
AMod −→ Γ ◦ Jn πn,m : Jn −→ Jm,

such that

πn,m ◦ πm,h = πn,h, πn,m ◦ jn = jm.

Masaryk University, Brno



NC differential geometry Classical jet functors Quantum symmetric forms NC Jet functors Results

Aim: to find a notion of jet bundle for noncommutative geometry.

How? we use a property of jet bundles: they fit in the following
short exact sequence of vector bundle (n-jet s.e.s.)

0 −→ SnE −→ JnE
πn,n−1
−−−−→ Jn−1E −→ 0.

Taking global sections we obtain the following short exact
sequence of finitely generated projective C∞(M)-modules
(equivalent by Serre-Swann)

0 −→ Γ(SnE) −→ Γ(JnE) Γπn,n−1
−−−−−→ Γ(Jn−1E) −→ 0.
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Given an exterior algebra Ω•d over A, we need to find functors
Snd , J

n
d : AMod −→ AMod and natural transformations

ιnd : Snd −→ Jnd , πn,md : Jnd −→ Jmd ,

fitting in the following short exact sequence

0 Snd Jnd Jn−1
d 0.

ιnd πn,n−1
d

Furthermore, we want a k-linear natural transformation
jnd : id

AMod −→ Jnd such that

πn,md ◦ πm,hd = πn,hd , πn,md ◦ jnd = jmd .

Masaryk University, Brno



NC differential geometry Classical jet functors Quantum symmetric forms NC Jet functors Results

Quantum symmetric forms
In the classical case, the C∞(M)-module of differential forms with
values in a bundle E can be seen as Ω•(M)⊗C∞(M) Γ(E).
So, given an exterior algebra Ω•d over A, we can define the functors

Ω•d : AMod −→ AMod E 7−→ Ω•d ⊗A E;
Ωn
d : AMod −→ AMod E 7−→ Ωn

d ⊗A E.

We define the functors
S0
d = Ω0

d = id
AMod, S1

d = Ω1
d := Ω1

d ⊗A −.
For n > 1, the functor of quantum symmetric forms Snd is
defined by induction as the kernel of the following composition

Ω1
d ◦ Sn−1

d

Ω1
d(ιn−1
∧ )

−−−−−−−−−−→ Ω1
d ◦ Ω1

d ◦ Sn−2
d

∧
Sn−2

d−−−−−−−−→ Ω2
d ◦ Sn−2

d

and ιn∧ : Snd −→ Ω1
d ◦ S

n−1
d is the inclusion.
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The following lemma shows other equivalent descriptions of Snd .

Lemma 1

If Ω1
d and Ω2

d are flat in ModA, for all n ≥ 0, the following
subfunctors of the tensor algebra Tnd := (Ω1

d)⊗An coincide
1 Snd ;
2
⋂n−2
k=0 ker

(
T kd ∧Tn−k−2

d

)
;

3
⋂

h≥2
0≤k≤n−h

ker
(
T kd (∧h)Tn−k−h

d

)
, where ∧h : T hd −→ Ωh

d ;

4
(
Shd ◦ T

n−h
d

)
∩
(
Tn−kd ◦ Skd

)
for 0 ≤ h, k ≤ n such that

h+ k > n.
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Spencer cohomology
For all k, h ≥ 0, consider the functor Ωk

d ◦ Shd , and define δh,k as

Ωk
d ◦ Shd Ωk

d ◦ Ω1
d ◦ S

h−1
d Ωk+1

d ◦ Sh−1
d

Ωk
d(ιh∧)

δh,k

(−1)k∧k,1
Sh−1

d

We get a complex in the category of functors of type
AMod→ AMod.

0 Snd Ω1
d ◦ S

n−1
d Ω2

d ◦ S
n−2
d Ω3

d ◦ S
n−3
d · · ·δn,0 δn−1,1 δn−2,2

Definition (Spencer cohomology)
We call this the Spencer δ-complex, its cohomology the Spencer
cohomology, and we denote the cohomology at Ωk

d ◦ Shd by Hh,k.
Masaryk University, Brno



NC differential geometry Classical jet functors Quantum symmetric forms NC Jet functors Results

Universal 1-jet module

We start from the simplest case by computing J1
uE for E = A

(classically A = C∞(M) ∼= Γ(M × R)).

Since S1
u = Ω1

u = ker(·) ⊂ A⊗A, we have a natural way of
building the 1-jet short exact sequence, that is

0 −→ Ω1
u −→ A⊗A −→ A −→ 0.

We thus define J1
uA := A⊗A (free 1-dim. A-bimodule), where

the projection π1,0
u : J1

uA −→ A is the algebra multiplication.
We take as universal prolongation j1

u : a 7→ 1⊗ a, which splits the
sequence in ModA.

Masaryk University, Brno
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0 Ω1
u J1

uA := A⊗A A 0
π1,0

u

We thus define J1
dA := A⊗A/Nd,

π1,0
d ([a⊗ b]) := ab, j1

d(a) := [1⊗ a].

In order to obtain the short exact sequence for all E in AMod we
can apply the functor −⊗A E : AMod −→ Mod.
The 1-jet sequence splits in ModA, so it remains exact.
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Nonholonomic jet functors

Definition
We term the functor

J
(n)
d := (J1

d )◦n = J1
d ◦ · · · ◦J1

d = (J1
dA)⊗An⊗A− : AMod→ AMod

the nonholonomic n-jet functor. The following composition is
called the nonholonomic n-jet prolongation.

j
(n)
d := j1

d,J
(n)
d

◦ j1
d,J

(n−1)
d

◦ · · · ◦ j1
d,J1

d
◦ j1

d : id −→ J
(n)
d .

For all 1 ≤ m ≤ n, we have the natural epimorphisms

π
(n,n−1;m)
d = J

(n−m)
d π1,0

d,J
(m−1)
d

: J (n)
d J

(n−1)
d ,

which will be called the nonholonomic n-jet projections.
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2-jet functor
We build the (holonomic) 2-jet module with the aim that the
following sequence is exact

0 S2
dE J2

dE J1
dE 0

ι2d,E
π2,1

d,E

ι1
d,J1

d
E

π1,0
d,J1

d
E

We assume Ω1
d flat in ModA. As for the classical case, we expect

the jet prolongation to agree with the nonholonomic one, i.e.

l2d,E ◦ j2
d,E = j

(2)
d,E = j1

d,J1
d
E ◦ j

1
d,E .

Under these conditions, j(2)
d (E) + S2

dE ⊆ J
(2)
d E satisfies the 2-jet

short exact sequence.
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We can describe J2
dE implicitly as the kernel of a bilinear map

Ð̃E : J (2)
d E −→ (Ω1

d n Ω2
d)(E),

where (Ω1
d n Ω2

d)(E) ∼= (Ω1
d n Ω2

d)⊗A E.
As a right A-module, Ω1

d n Ω2
d
∼= Ω1

d ⊕ Ω2
d, but as an A-bimodule,

it comes equipped with a non-trivial left action

f ? (α+ ω) = fα+ df ∧ α+ fω, ∀f ∈ A, α ∈ Ω1
d, ω ∈ Ω2

d.

Explicitly, we have

Ð̃E : J (2)
d E (Ω1

d n Ω2
d)(E)

[a⊗ b]⊗A [c⊗ e] (ad(bc)⊗A e, da ∧ d(bc)⊗A e) .
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Definition (Holonomic n-jet functor)
Let A be a k-algebra endowed with an exterior algebra Ω•d over it.
We define Jnd as the kernel of the natural transformation

J1
d ◦ J

n−1
d J1

d ◦ J1
d ◦ J

n−2
d (Ω1

d n Ω2
d) ◦ J

n−2
d ,

J1
d (ln−1

d
) Ð̃

Jn−2
d

where we denote the natural inclusion by lnd : Jnd −→ J1
d ◦ J

n−1
d .

We call Jnd the (holonomic) n-jet functor.

It is natural to consider the following composition

ιJn
d

:= J
(n−2)
d (l2d) ◦ J

(n−3)
d (l3d) ◦ · · · ◦ J

(1)
d (ln−1

d ) ◦ lnd : Jn
d −→ J(n)

d .

In general, ιJn
d
is not injective (as has been noted also in the

setting of synthetic differential geometry).
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We define the (holonomic) n-jet projection as the natural
transformation πn,n−1 obtained as the composition

Jnd J1
d ◦ J

n−1
d Jn−1

d .
lnd

π1,0
d,Jn−1

d

More generally, by composing them, we get, for all 0 ≤ m ≤ n,

πn,md := πm+1,m
d ◦ πm+2,m+1

d ◦ · · · ◦ πn,n−1
d : Jn

d −→ Jm
d .

The natural map ιnd is defined by induction, for n ≥ 2 as the
unique morphism that commutes in the following diagram

Snd Ω1
d ◦ S

n−1
d Ω1

d ◦ J
n−1
d

Jnd J1
d ◦ J

n−1
d

ιn∧

ιnd

Ω1
d(ιn−1

d
)

ι1
d,Jn−1

d
lnd
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Theorem (Holonomic jet exact sequence)
Let A be a k-algebra endowed with an exterior algebra Ω•d such
that Ω1

d, Ω2
d, and Ω3

d are flat in ModA. For n ≥ 1, if the Spencer
cohomology Hm,2 vanishes, for all 1 ≤ m < n− 2, then the
following sequence is exact,

0 Snd Jnd Jn−1
d Hn−2,2.

ιnd πn,n−1
d

Therefore, if Hn−2,2 = 0 we obtain a short exact sequence

0 Snd Jnd Jn−1
d 0.

ιnd πn,n−1
d
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Theorem (Stability)
Let A be a k-algebra endowed with an exterior algebra Ω•d.

1 If Ω1
d is in AFlat (resp. AProj, AFGP), then J (n)

d preserves
AFlat (resp. AProj, AFGP);

2 If Ω1
d, Ω2

d, and Ω3
d are flat in ModA, Hm,2 vanishes and Smd is

in AFlat (resp. AProj, AFGP), for all 1 ≤ m ≤ n, then Jnd
preserves AFlat (resp. AProj, AFGP).

These functors are reasonable, as they map bundles into bundles.
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Theorem (Classical correspondence)
Let A = C∞(M) for a smooth manifold M , let Ω•d = Ω•(M)
equipped with the de Rham differential d, and let E be the space
of smooth sections of a vector bundle. Then the C∞(M)-modules
of sections of the associated classical nonholonomic and holonomic
n-jet bundles are isomorphic to J (n)

d E and JndE in AMod,
respectively, and the prolongation maps and jet projections are
compatible with the isomorphisms.
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Definition (Differential operators)

Let E,F ∈ AMod. A k-linear map ∆: E → F is called a linear
differential operator of order at most n with respect to the exterior
algebra Ω•d, if there exists an A-module map ∆̃ ∈ AHom(JndE,F )
such that the following diagram commutes:

JndE

E F

∆̃

∆

jn
d

If n is minimal, we say that ∆ is of order n.

stability under sum and composition;
what should be a differential operator is a differential operator
(connections, d, partial derivatives, ÐE = Ð̃E ◦ j1

J1
d
E
);

new tool to build exterior algebras (terminal calculi).
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Thank you!
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